Channel Dependent Adaptive Modulation and Coding Without Channel State Information at the Transmitter

Bradford D. Boyle, John MacLaren Walsh, and Steven Weber

Modeling & Analysis of Networks Laboratory Drexel University Department of Electrical and Computer Engineering http://network.ece.drexel.edu

May 30, 2013

Introduction

- Traditional AMC adjust the rate of information flow based on CSI feedback from a receiver
- Feedback can consume a non-trivial amount of capacity
- Omniscient transmitters would select an appropriate modulation and coding scheme without feedback

AMC without Feedback

- We consider a coding strategy for conveying a variable number of information bits across a channel with an unknown SNR
- Propose two metrics for comparing its performance to an omniscient transmitter and characterize an optimal strategy
- Investigate performance scaling in the number of unknown states and the difference between the best and worst state

Related Work

Approach to finite compound channels [2]

 Broadcast coding strategy used for Rayleigh fading AWGN channel [3]

Variable to fixed channel capacity [4]

- Variable number $L_n \leq m_n$ of bits correctly received for fixed blocklength n
- Provides an expression for channel capacity for AWGN channel with a continuous support set for SNR; our results match in the limit as K → ∞ for uniformly distributed (in dB) SNR

Problem Model

- Point-to-point AWGN channel with unknown SNR drawn from a finite set of possible sets
- Model as a broadcast channel with "virtual" receivers for each possible state

$$R_k \leq \mathsf{C}\left(\frac{\alpha_k}{\sum_{i < k} \alpha_i + \gamma_k^{-1}}\right) \quad k = 1, \dots, K \qquad [5, 6]$$

• If the channel is in state *i*, the receiver will receive $R_i + \cdots + R_K$ information bits

Gap to Omniscience Metrics

1 Expected Capacity Loss

$$J_{\mathbb{E},|\cdot|}(\boldsymbol{\alpha}) = \sum_{k=1}^{K} p_k \left(\mathsf{C}(\gamma_k) - \sum_{i=k}^{K} \mathsf{C}\left(\frac{\alpha_i}{\sum_{j < i} \alpha_j + \gamma_i^{-1}}\right) \right)$$

or alternatively

$$\begin{split} J_{\mathbb{E},|\cdot|}\left(c\right) &= \mathbb{E}\left[\mathsf{C}\left(\mathsf{\Gamma}\right)\right] - \sum_{k=1}^{K} f_k \mathsf{C}\left(\frac{c_k - c_{k-1}}{c_{k-1} + \gamma_k^{-1}}\right) \\ f_k &\triangleq \sum_{i=1}^{k} p_i = \mathbb{P}\left[\mathsf{\Gamma} \geq \gamma_k\right] \qquad c_k = \sum_{i=1}^{l} \alpha_i \end{split}$$

2 Fractional Expected Capacity Loss

$$J_{\%,\mathbb{E}}\left(oldsymbol{lpha}
ight)=rac{J_{\mathbb{E},\left|\cdot
ight|}\left(oldsymbol{lpha}
ight)}{\mathbb{E}\left[\mathsf{C}\left(\mathsf{\Gamma}
ight)
ight]}$$

Gap to Omniscience Optimization

The fraction of power allocated α_i for each channel state γ_i should be chosen to minimize the expected capacity loss

which is equivalent to

$$\begin{array}{ll} \text{maximize} & \sum_{k=1}^{K} f_k C\left(\frac{c_k - c_{k-1}}{c_{k-1} + \gamma_k^{-1}}\right) \\ \text{subject to} & c_k \geq c_{k-1} \quad k = 1, \dots, K \end{array}$$

Note: The optimization is not convex.

Gap to Omniscience General Solution

• Partial characterization given by

$$c_i^* = \frac{f_i \gamma_i - f_{i+1} \gamma_{i+1}}{\gamma_i \gamma_{i+1} (f_{i+1} - f_i)}$$

if $c_{i-1}^* \neq c_i^* \neq c_{i+1}^*$ with $c_0^* = 0$ and $c_K^* = 1$.

 If f_i's and γ_i's are such that the above is an increasing sequence in i, then

$$c_i^* = \left[\frac{f_i\gamma_i - f_{i+1}\gamma_{i+1}}{\gamma_i\gamma_{i+1}(f_{i+1} - f_i)}\right]_0^1$$

where $[\cdot]_0^1 = \max\{\min\{\cdot, 1\}, 0\}.$

If p_i = ¹/κ and γ_i = δ^{K−i}γ_K with δ > 1, then the above is an increasing sequence.

Gap to Omniscience

Channels with Two States

Let
$${\sf K}=$$
 2, $\gamma_1=\delta\gamma_2$, $\delta\geq 1$, and $lpha=lpha_1$.

• The optimal fraction of the power to allocate for the better SNR (γ_1) is

$$\alpha^* = \left[\frac{p_1\delta - 1}{\delta\gamma_2(1 - p_1)}\right]_0^1$$

• Properties of α^*

- $\alpha^* = 0$ for $1 \le \delta \le 1/p_1$
- If $p_1 < 1$ then α^* is monotone increasing in δ
- If $p_1 \leq \gamma_2/\gamma_2+1$, then

$$\lim_{\delta \to \infty} \alpha^* = \frac{p_1}{\gamma_2(1-p_1)}$$

If $p_1 > \gamma_2/\gamma_2+1$, then $\alpha^* = 1$ for all $\delta \ge 1/(p_1-\gamma_2(1-p_1))$

For certain parameters (p_1, γ_2) , full power is not allocated for the state with the better SNR (γ_1) independent of how much better that state might be.

Gap to Omniscience

Channels with Two States

- Properties of Expected Capacity Loss
 - If $\delta=1$, then $J_{\mathbb{E},|\cdot|}=0$
 - $J_{\mathbb{E},|\cdot|}$ is increasing in δ
 - If $p_1 \leq \gamma_2/\gamma_2+1$,

$$\lim_{\delta \to \infty} J_{\mathbb{E},|\cdot|}\left(\alpha^*\right) = \frac{p_1}{2} \log_2\left(\frac{\gamma_2(1-p_1)}{(1+\gamma_2)p_1}\right) - \frac{1}{2} \log_2\left(1-p_1\right)$$

and if $p_1 > \gamma_2/\gamma_{2+1}$

$$\lim_{N o \infty} J_{\mathbb{E}, |\cdot|}\left(lpha^{st}
ight) = rac{1-p_1}{2} \log_2\left(1+\gamma_2
ight)$$

- Properties of Fractional Expected Capacity Loss
 - $J_{\%,|\cdot|}$ is increasing in δ for $1 \le \delta \le 1/\rho_1$
 - $J_{\%,|\cdot|}$ is non-monotonic in δ

$$\lim_{\delta
ightarrow\infty}J_{\%,\mathbb{E}}\left(lpha
ight)=0$$

Results *K*-State Channel Results

Gap to Omniscience metrics as a function of K and max SNR γ_1 with $\gamma_K = 0$ dB, $p_i = 1/\kappa$, and $\gamma_2, \ldots, \gamma_{K-1}$ evenly spaced (in dB) between γ_1 and γ_K

- $J_{\mathbb{E},|\cdot|}\left(oldsymbol{lpha}^*
 ight)$ is increasing in γ_1
- For small γ_1 , $J_{\mathbb{E},|\cdot|}(\alpha^*)$ looks to be linear and independent of K.

- $J_{\%,\mathbb{E}}\left(oldsymbol{lpha}^*
 ight)$ is *not* monotonic in γ_1 .
- For small γ₁, J_{%,E} (α*) looks to be linear and independent of K.

Two-State Channel Results

Optimal Power Split

The optimal power split α^*

- is identically 0 for $\delta < 1/p_1 = 3 \text{ dB}$
- is monotonically increasing in δ
- approaches the limits
 - 1 at $\delta = 6 \text{ dB}$ for $\gamma_2 = -3 \text{ dB}$
 - 1 for $\gamma_2 = 0 \text{ dB}$
 - 0.5 for $\gamma_2 = 3 \text{ dB}$

Two-State Channel Results

Minimum Expected Capacity Loss

The minimum expected capacity loss $J_{\mathbb{E},|\cdot|}\left(lpha^{*}
ight)$

- is equal to 0 for $\delta = 1$ (0 dB)
- is monotonically increasing in δ
- bounded by
 - 0.1465 bits for $\gamma_2 = -3$ dB,
 - 0.2500 bits for $\gamma_2 = 0$ dB, and
 - 0.3535 bits for $\gamma_2 = 3 \text{ dB}$

Two-State Channel Results

Minimum Fractional Capacity Loss

The minimum fractional expected capacity loss $J_{\%,\mathbb{E}}\left(lpha^{*}
ight)$

- is increasing in δ over the interval 0 dB to 3 dB
- is non-monotonic over the full range of δ
- converges rather slowly to 0.

Conclusions & Future Work

- *K*-user broadcast channel can model a point-to-point channel with *K* unknown states
- Using broadcast model to measure the loss in performance as compared to an omniscient transmitter
- Demonstrated several non-obvious properties of the optimal power split for K = 2 states
- $J_{\mathbb{E},|\cdot|}\left(lpha^{*}
 ight)$ and $J_{\%,\mathbb{E}}\left(lpha^{*}
 ight)$ approach a limiting function
- Use calculus of variations to characterize the limiting function as $K \to \infty$
 - The case of Rayleigh distributed channel fades in [3]

The authors gratefully acknowledge AFOSR support of this research through award FA9550-12-1-0086.

References

- [1] Abbas El Gamal and Young-Han Kim, Network Information Theory, Cambridge University Press, 2011.
- [2] Thomas M. Cover,
 "Broadcast channels,"
 IEEE Trans. Inf. Theory, vol. 18, no. 1, pp. 2–14, Jan. 1972.
- [3] Shlomo Shamai (Shitz) and Avi Steiner,
 "A broadcast approach for a single-user slowly fading mimo channel," *IEEE Trans. Inf. Theory*, vol. 49, no. 10, pp. 2617–2635, 2003.
- [4] Sergio Verdú and Shlomo Shamai (Shitz),
 "Variable-rate channel capacity,"
 IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2651–2667, June 2010.
- [5] Patrick P. Bergmans,

"Random coding theorem for broadcast channels with degraded components," *IEEE Trans. Inf. Theory*, vol. 19, no. 2, pp. 197–207, Jan. 1973.

[6] Patrick P. Bergmans,

"A simple converse for broadcast channels with additive white gaussian noise (corresp.),"

IEEE Trans. Inf. Theory, vol. 20, no. 2, pp. 279–280, March 1974.