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• Traditional AMC adjust the rate of information flow based on
CSI feedback from a receiver

• Feedback can consume a non-trivial amount of capacity

• Omniscient transmitters would select an appropriate
modulation and coding scheme without feedback



AMC without Feedback
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• We consider a coding strategy for conveying a variable number
of information bits across a channel with an unknown SNR

• Propose two metrics for comparing its performance to an
omniscient transmitter and characterize an optimal strategy

• Investigate performance scaling in the number of unknown
states and the di↵erence between the best and worst state
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Approach to finite compound channels [2]

• Broadcast coding strategy used for Rayleigh fading AWGN
channel [3]
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Variable to fixed channel capacity [4]

• Variable number L
n

 m

n

of bits correctly received for fixed blocklength n

• Provides an expression for channel capacity for AWGN channel with a
continuous support set for SNR; our results match in the limit as K ! 1 for
uniformly distributed (in dB) SNR



Problem Model
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• Point-to-point AWGN channel with unknown SNR drawn from a finite set of
possible sets

• Model as a broadcast channel with “virtual” receivers for each possible state
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• If the channel is in state i , the receiver will receive R
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information bits



Gap to Omniscience
Metrics

1 Expected Capacity Loss
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2 Fractional Expected Capacity Loss
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Gap to Omniscience
Optimization

The fraction of power allocated ↵
i

for each channel state �
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be chosen to minimize the expected capacity loss
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Note: The optimization is not convex.



Gap to Omniscience
General Solution

• Partial characterization given by
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with � > 1, then the above is an
increasing sequence.



Gap to Omniscience
Channels with Two States

Let K = 2, �1 = ��2, � � 1, and ↵ = ↵1.

• The optimal fraction of the power to allocate for the better
SNR (�1) is

↵⇤ =


p1� � 1

��2(1 � p1)

�1

0

• Properties of ↵⇤

• ↵⇤ = 0 for 1  �  1/p1
• If p1 < 1 then ↵⇤ is monotone increasing in �
• If p1  �2/�2+1, then
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If p1 > �2/�2+1, then ↵⇤ = 1 for all � � 1/(p1��2(1�p1))

For certain parameters (p1, �2), full power is not allocated for the state with the better

SNR (�1) independent of how much better that state might be.



Gap to Omniscience
Channels with Two States

• Properties of Expected Capacity Loss
• If � = 1, then JE,|·| = 0
•

JE,|·| is increasing in �
• If p1  �2/�2+1,
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• Properties of Fractional Expected Capacity Loss
•

J%,|·| is increasing in � for 1  �  1/p1
•

J%,|·| is non-monotonic in �
•
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Results
K -State Channel Results

Gap to Omniscience metrics as a function of K and max SNR �1 with �
K

= 0 dB,
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•
JE,|·| (↵⇤) is increasing in �1

• For small �1, JE,|·| (↵⇤) looks to be
linear and independent of K .
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•
J%,E (↵⇤) is not monotonic in �1.

• For small �1, J%,E (↵⇤) looks to be
linear and independent of K .



Two-State Channel Results
Optimal Power Split
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The optimal power split ↵⇤

• is identically 0 for � < 1/p1 = 3 dB

• is monotonically increasing in �
• approaches the limits

• 1 at � = 6 dB for �2 = �3 dB
• 1 for �2 = 0 dB
• 0.5 for �2 = 3 dB



Two-State Channel Results
Minimum Expected Capacity Loss
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The minimum expected capacity loss JE,|·| (↵
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• is equal to 0 for � = 1 (0 dB)

• is monotonically increasing in �
• bounded by

• 0.1465 bits for �2 = �3 dB,
• 0.2500 bits for �2 = 0 dB, and
• 0.3535 bits for �2 = 3 dB



Two-State Channel Results
Minimum Fractional Capacity Loss
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The minimum fractional expected capacity loss J%,E (↵
⇤)

• is increasing in � over the interval 0 dB to 3 dB

• is non-monotonic over the full range of �

• converges rather slowly to 0.



Conclusions & Future Work

•
K -user broadcast channel can model a point-to-point channel
with K unknown states

• Using broadcast model to measure the loss in performance as
compared to an omniscient transmitter

• Demonstrated several non-obvious properties of the optimal
power split for K = 2 states

•
JE,|·| (↵

⇤) and J%,E (↵
⇤) approach a limiting function

• Use calculus of variations to characterize the limiting function
as K ! 1

• The case of Rayleigh distributed channel fades in [3]
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