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Introduction
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e Traditional AMC adjust the rate of information flow based on
CSI feedback from a receiver

e Feedback can consume a non-trivial amount of capacity

e Omniscient transmitters would select an appropriate
modulation and coding scheme without feedback



AMC without Feedback
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e \We consider a coding strategy for conveying a variable number
of information bits across a channel with an unknown SNR

e Propose two metrics for comparing its performance to an
omniscient transmitter and characterize an optimal strategy

e Investigate performance scaling in the number of unknown
states and the difference between the best and worst state
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Approach to finite compound channels [2]

e Broadcast coding strategy used for Rayleigh fading AWGN

channel [3]
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Variable to fixed channel capacity [4]
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® \ariable number L, < m, of bits correctly received for fixed blocklength n

® Provides an expression for channel capacity for AWGN channel with a

continuous support set for SNR; our results match in the limit as K — oo for
uniformly distributed (in dB) SNR



Problem Model
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® Point-to-point AWGN channel with unknown SNR drawn from a finite set of
possible sets

® Model as a broadcast channel with “virtual” receivers for each possible state

Rk§C< s _1> k=1,...,K [5, 6]
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® |f the channel is in state /, the receiver will receive R; + - - - + Rk information bits




Gap to Omniscience
Metrics

@ Expected Capacity Loss
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Gap to Omniscience

Optimization

The fraction of power allocated «; for each channel state ~; should
be chosen to minimize the expected capacity loss

minimize  Jg || ()
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subjectto a, >0 k=1,....K
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which is equivalent to

K
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subjectto c¢cx > ck1 k=1,....K

Note: The optimization is not convex.



Gap to Omniscience

General Solution

e Partial characterization given by
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if ¢ | # ¢ # ¢y with g =0 and ¢ = 1.
e |f fi’'s and ~;'s are such that the above is an increasing
sequence in I, then

o [ fivi — fir1vita ]1
' Vivie1(fir1 — 1)
where []5 = max{min{-,1},0}.

o If pj =1/k and ; = 6"~k with § > 1, then the above is an
Increasing sequence.
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Gap to Omniscience

Channels with Two States

Let K =2, v1 =07, 0 > 1, and a = a;.

e The optimal fraction of the power to allocate for the better

SNR (71) is
Od* L [ p15 —1 ]1
072(1 —p1) |

e Properties of o
o 0" =0forl <9< 1Yp
e If p; <1 then o™ is monotone increasing in
o If p; < 72/72+1, then

lim o = 2 .
600 Y2(1 = p1)

If p1 > 72/v,+1, then a® =1 for all 6 > Y (p1—y2(1—p1))

For certain parameters (p1,~2), full power is not allocated for the state with the better
SNR (1) independent of how much better that state might be.



Gap to Omniscience

Channels with Two States

e Properties of Expected Capacity Loss
e If ) =1, then J]E,|.| =0
e Jg .| is increasing in 0
o |f P1 S 72/724—1,

- o P1 Y2(1 — Pl)) 1
im Jrp (o) = — lo — —log, (1 —
and if p; > 72/y+1
. *\ 1-— P1
lim Jg . (o) = log, (1 + 72)
d— 00 2

e Properties of Fractional Expected Capacity Loss

e Joy,|. is increasing in § for 1 < 6 < 1/p,
® Jy, |.| is non-monotonic in o
[

lim J%]E (Oé) =0
d—oo



Results

K-State Channel Results

Gap to Omniscience metrics as a function of K and max SNR ~; with v = 0 dB,

pi = 1/K, and ~a,...,vk_1 evenly spaced (in dB) between ~; and vk

| | | | | 50 ‘
—~ 14 k=5 — k=15 . k=25 ] S I
5 1.2 + I ; 40 ¢ ,.e““ R
= ‘ o
A 1 ‘.‘.;\_-.‘.'::‘-"'-“"“‘ —
2 0.8 qﬂ\\-‘ﬂ\\\-‘-‘ﬂ““‘.‘ﬁ ---- % 30 ¢
CC(’;_ 0.6 oot awst U 20 +
Y 04 = &
u% 0.2 ¢ S 10 |
0 ‘ T 5 k=15 k=25
0 5 10 15 20 25 30 T 0 K=S k=1 k525
0 5 10 15 20 25 30
Max SNRin dB Max SNR in dB
Minimum Expected Capacity Minimum Fractional Expected
Loss Capacity Loss
® Jg .| (a*) is increasing in 71 ® Jy, g (™) is not monotonic in 7.
® For small 71, Jg .| (&™) looks to be ® For small 1, Jo, g (™) looks to be

linear and independent of K. linear and independent of K.



Two-State Channel Results

Optimal Power Split
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The optimal power split o™
e is identically 0 for § < 1/p; =3 dB

e is monotonically increasing in ¢
e approaches the limits
e 1ato=6dB forv =—-3dB
e 1forv, =0dB
e 0.5 forv =3dB



Two-State Channel Results

Minimum Expected Capacity Loss
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The minimum expected capacity loss Jg |.| ()
e is equal to 0 for 6 =1 (0 dB)

e is monotonically increasing in ¢

e bounded by
e 0.1465 bits for v» = —3 dB,
e 0.2500 bits for v, = 0 dB, and
e 0.3535 bits for v» = 3 dB



Two-State Channel Results

Minimum Fractional Capacity Loss

Frac. Exp. Cap. Loss (%)
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The minimum fractional expected capacity loss Jy, g (™)
® is increasing in 0 over the interval 0 dB to 3 dB
e is non-monotonic over the full range of ¢

e converges rather slowly to 0.



Conclusions & Future Work

e K-user broadcast channel can model a point-to-point channel
with K unknown states

e Using broadcast model to measure the loss in performance as
compared to an omniscient transmitter

e Demonstrated several non-obvious properties of the optimal
power split for K = 2 states

® Jg || (a”) and Joy, g (™) approach a limiting function

e Use calculus of variations to characterize the limiting function
as K — o0

e The case of Rayleigh distributed channel fades in [3]
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