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Abstract

In this paper, we consider the problem of communicating over an Additive White Gaussian Noise
(AWGN) channel with an unknown noise power without feedback. For the case where the noise power is
drawn from a distribution with K distinct values, we model the channel as a K-user broadcast channel,
with a user for each of the K possible noise powers. We propose two metrics for measuring the loss of
using a broadcast code compared to an omniscient transmitter. Using these metrics, we solve for the
optimal power allocation in a superposition code. For the case of K = 2, we prove several interesting
properties of the optimal power allocation and the minimum loss.

1 Introduction

Traditional Adaptive Modulation and Coding (AMC) proceeds by first defining a finite collection of codes
and modulation schemes associated with different information rates rk measured in bits per channel use. The
index k ∈ {1, . . . ,K} indicating which scheme to use is called the Modulation and Coding Scheme (MCS)
index. The receiver measures the channel quality using reference or training signals, or pilots, and determines
the information rate among this finite set corresponding to a modulation and coding scheme achieving a
given target probability of error. The associated index k, or some quantization of it, is then fed back to the
transmitter under the label Channel Quality Index (CQI). The transmitter then takes into consideration
factors such as the amount of data waiting to be sent to the various receivers associated with it and their
necessary quality of service, then selects the modulation and coding scheme to use when transmitting to
them.

The key capability that such a scheme allows is the adaptability of the amount of information flowing
across the link to the fluctuations in channel state. Such a scheme relies on explicit feedback from the
receiver to the transmitter and this feedback can account for a non-trivial amount of the channel capacity.
An omniscient transmitter would know which state the channel is in and could select an appropriate code
and modulation scheme without explicit feedback from the receiver.

The problem considered here fits into the larger class of problems dealing with coding for channels with
state. The writing on dirty paper result, which is a specialization of the Gelfand-Pinsker theorem to AWGN
channels with state, shows that if the state information is available noncausally at the transmitter, then
the effect of the state can be canceled [1]. Our model assumes that the state information is not available
(causally or noncausally) at the transmitter.

In this paper, we propose a broadcast channel model for a transmitter to effect channel dependent AMC
without Channel State Information (CSI), as suggested by Cover’s approach to compound channels [2] (§2)
along with two related metrics for measuring the loss between our model and an omniscient transmitter (§3).
We provide a characterization of a transmitter that minimizes these losses (§3.1). For the special case of
K = 2, we prove several non-intuitive properties of the optimal solution (§3.2). Finally, we provide plots of
the optimal solution for both the general case (§4.1) and the special case K = 2 (§4.2).
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Figure 1: Trying to guarantee messages with information rates that are a function of an unknown channel
SNR can be understood as a broadcast channel model. The receivers on the right do not in reality simulta-
neously exist, however, the code must ensure a certain message is successfully received under each of the K
possible channel states, and this can be thought of as reliably transmitting those messages to K simultaneous
receivers.

2 Problem Model

Consider a point-to-point AWGN channel between a basestation and mobile handset. The unknown noise
power of the channel is modeled as a random variable N with some probability mass function pk defined
on a set of K possible values n1 ≤ n2 ≤ · · · ≤ nK . Under the assumption of a fixed transmit power P
at the basestation, we can consider the random variable Γ = P/N with probability mass function defined
on γ1 = P/n1 ≥ · · · γK = P/nK . This is depicted in the left-hand side of Fig. 1. We are interested in a
variable-to-fixed coding strategy [3], wherein a fixed number of symbols are transmitted across the channel
and the decoder recovers a variable number of information bits, depending on the state of the channel. By
utilizing a fixed blocklength, we ensure the the receiver decodes some information in a fixed amount of time.
This is in contrast to a fixed-to-variable coding strategy [3] (e.g., rateless fountain codes) where a variable
number of symbols (and hence variable delay) are transmitted in order for the receiver to decode a fixed
number of information bits. We note that in an AMC scheme with feedback, the collection of codes do not
need to be all of the same length.

For channels with state, a lower bound for the variable-to-fixed channel capacity is known in terms of
the capacity region for a broadcast channel with degraded message sets [3]. For the AWGN channel model
considered here, this bound is tight. The capacity region of the K-user broadcast channel with independent
messages is [4, 5]

Rk ≤ C

(
αk∑

i<k αi + γ−1k

)
k = 1, . . . ,K (1)

where γ1 ≥ · · · ≥ γK are the SNRs (γk = P/nk) associated with the selected adaptive modulation and
coding rates, C(γ) = 1/2 log2(1 + γ), and α ≥ 0 such that

∑
k αk = 1. By consider the superposition coding

achievability proof of (1), we can understand the αk’s as being the fraction of the transmitter’s total power
P that is used for encoding the message for the k-th receiver. The message containing Rk bits is reliably
decoded by all receivers 1, . . . , k; that is, the k-th receiver reliably receives

∑K
i=k Rk bits and in particular,

all receivers reliably receive RK bits and this can be interpreted as representing common information for all
receivers.

3 Gap To Omniscience

We must select a point on the Pareto frontier of (1) by selecting αk ≥ 0, k = 1, . . . ,K such that
∑
k αk = 1,

and we must additionally measure the capacity loss from not knowing the SNR and attempting to transmit
a single message (with a single, fixed block length) that is capable of being decoded at several different SNRs
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as compared to an omniscient (i.e., perfect CSI estimation and instantaneous feedback) model. It is natural,
then, to combine these two issues together by selecting the point in the rate region which minimizes an
appropriately chosen loss metric.

If we have a prior distribution indicating the probability that the channel is in each of the K states, we
could seek to minimize expected capacity loss

JE,|·| (α) =

K∑
k=1

pk

(
C(γk)−

K∑
i=k

C

(
αi∑

j<i αj + γ−1i

))
(2)

where pk is the probability of the channel being in state γk. The right-hand side of (2) is the difference
between the variable-to-fixed channel capacity if the AWGN channel state were known to the transmitter
and when the state is unknown [3].

3.1 General Solution

Once we have selected an appropriate loss metric, we find α1, . . . , αK by solving the following optimization

minimize
α

J (α)

subject to αk ≥ 0 k = 1, . . . ,K

K∑
k=1

αk = 1.

(3)

We can alternatively express the expected capacity loss as

JE,|·| (c) = E [C (Γ)]−
K∑
k=1

fkC

(
ck − ck−1
ck−1 + γ−1k

)
(4)

where

fk ,
k∑
i=1

pi = P [Γ ≥ γk] (5)

and

ck =

k∑
i=1

αi, αk = ck − ck−1 (6)

We observe that only the negative sum in (4) depends on c, and hence we can minimize (4) by selecting the
c that solves

maximize
c

K∑
k=1

fkC

(
ck − ck−1
ck−1 + γ−1k

)
subject to ck ≥ ck−1 k = 1, . . . ,K.

(7)

We note that the objective function in both (3) and (7) is not convex; as a simple counter example, let
K = 2, γ1 = 2, γ2 = 1, and p1 = 1/2. The second derivative w.r.t. α using these parameters is not positive
semi-definite (see Appendix B).

For notational brevity in the sequel, we will define the following quantity

ĉi ,
fiγi − fi+1γi+1

γiγi+1(fi+1 − fi)
. (8)

Implicit in the above definition is the assumption that pi > 0 for all i.
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Theorem 1. If the fi’s and γi’s are such that (8) is an increasing sequence in i, the solution to (7) is is
given as

c∗i = [ĉi]
1
0 (9)

where [·]10 = max{min{·, 1}, 0}.

Proof. For all feasible c, there are at mostK−1 active constraints; otherwise, we would have the contradiction
0 = 1. The structure of the inequality constraints are such that we can pick any K−1 of the gradient vectors
at a feasible point and have a set of K−1 linearly independent vectors. Therefore every feasible c is regular.

Forming the Lagrangian for this optimization we have

L(c,µ) = −
K∑
i=1

fiC

(
ci − ci−1
ci−1 + γ−1i

)
+

K∑
i=1

µi(ci−1 − ci). (10)

The first order derivative of the Lagrangian is

∂

∂ci
L(c,µ) = −fi

∂

∂ci
C

(
ci − ci−1
ci−1 + γ−1i

)
− fi+1

∂

∂ci
C

(
ci+1 − ci
ci + γ−1i+1

)
− µi + µi+1

=
−fi

2(ci + γ−1i ) ln 2
+

−fi+1

2(ci + γ−1i+1) ln 2
− µi + µi+1

For a local minimum c∗, first order necessary condition yields

c∗i − ĉi = 2 ln 2(µi − µi+1)
(c∗i + γ−1i )(c∗i + γ−1i+1)

fi+1 − fi
. (11)

Two key observations are:

1. If pi > 0, then
(c∗i + γ−1i )(c∗i + γ−1i+1)

fi+1 − fi
> 0

2. If µ∗i > 0, then by complimentary slackness, we must have c∗i = c∗i−1.

We first consider the case c∗i > ĉi. The left-hand side of (11) is positive and we must have that µ∗i −µ∗i+1 >
0 which implies µ∗i > 0 and that c∗i−1 = c∗i . We have assumed that ĉi−1 < ĉi for all i = 1, . . . ,K. We have
shown that if c∗i > ĉi then c∗i−1 = c∗i . Combining these three facts would give us that c∗i−1 = c∗i > ĉi > ĉi−1
and in particular c∗i−1 > ĉi−1. Repeating, we come to the conclusion if c∗i > ĉi then c∗i = c∗i−1 = · · · = c∗0 = 0.

Next, we consider the case c∗i < ĉi. The left-hand side of (11) is negative and we must have that
µ∗i − µ∗i+1 < 0 which implies that µ∗i+1 > 0 and that c∗i+1 = c∗i . We have c∗i+1 = c∗i < ĉi < ĉi+1 and in
particular c∗i+1 < ĉi+1. Repeating, we come to the conclusion if c∗i < ĉi then c∗i = c∗i+1 = · · · = c∗K = 1.

Remark. The requirement in Theorem 1 that the fk’s and γk’s are such that (8) is an increasing sequence in
k holds true in some natural cases of interest. If we consider uniformly distributed (pk = 1/K), exponentially
spaced SNRs (γk = δK−kγK with δ > 1), then (8) becomes

c∗k =
k(δ − 1)− 1

δK−kγK

which is increasing in k.

A closely related metric is the fractional expected capacity loss

J%,E (α) =
JE,|·| (α)∑K
k=1 pkC(γk)

(12)

which is the expected capacity loss multiplied by a scalar that does not depend on α and so has the same
optimal α.
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3.2 Channels with Two States

We now consider in detail the special case where the channel is in one of two possible states (K = 2). We
will write γ1 = δγ2 for some δ ≥ 1 and consider how the selected point on the Pareto frontier of (1) and the
resulting minimum loss behave as a function of δ for the fixed parameters γ2 and p1 (i.e., the probability
of being in the better state). For the case of two users, a point on the Pareto frontier is parameterized by
α = (α1, α2) = (α, 1− α).

Corollary 1. For K = 2 and γ1 = δγ2, δ ≥ 1, the α that minimizes (2) and (12) is given as

α∗ =

[
p1δ − 1

δγ2(1− p1)

]1
0

(13)

Proposition 1. For K = 2 and γ1 = δγ2, δ ≥ 1, (i) α∗ = 0 for 1 ≤ δ ≤ 1/p1; (ii) If p1 < 1 then α∗ is
monotone increasing in δ, and; (iii) If p1 ≤ γ2/γ2+1, then

lim
δ→∞

α∗ =
p1

γ2(1− p1)
. (14)

If p1 > γ2/γ2+1, then
α∗|δ= 1

p1−γ2(1−p1)
= 1. (15)

Proof. (i) Follows immediately from (13).

(ii) Taking the first derivate we have

∂

∂δ

p1δ − 1

δγ2(1− p1)
=

γ2(1− p1)

(δγ2(1− p1))2
> 0

(iii) If p1 ≤ γ2/γ2+1, then there exists no positive δ for which α∗ = 1 and we have

lim
δ→∞

α∗ = lim
δ→∞

p1δ − 1

δγ2(1− p1)
.

If p1 > γ2/γ2+1 then simple algebra shows that when δ = 1/p1−γ2(1−p1), α∗ = 1.

The first part of Proposition 1 says the the better SNR (γ1) needs to be larger than worse SNR (γ2) by
a minimum amount before the transmitter should allocate any of its power to encoding a message for this
better channel. This threshold is inversely proportional to the probability of the high SNR — the less likely
Γ = γ1, the larger γ1 needs to be before the transmitter will allocate power for this channel state. The last
part of Proposition 1 says that unless the probability of being in the better state is sufficiently high, the
transmitter should not allocate all of its power for this channel despite how much better the channel may
be. Conversely, if the probability of Γ = γ1 is high enough then there exists a threshold on γ1 above which
the transmitter should allocate all of its power to that state.

Proposition 2. For K = 2 and γ1 = δγ2 with δ ≥ 1, the expected capacity loss JE,|·| (α
∗) is: (i)

JE,|·| (α
∗)
∣∣
δ=1

= 0; (16)

(ii) increasing in δ, and; (iii) bounded as δ →∞. In particular, if p1 ≤ γ2/γ2+1,

lim
δ→∞

JE,|·| (α
∗) =

p1
2

log2

(
γ2(1− p1)

(1 + γ2)p1

)
− 1

2
log2 (1− p1) (17)

and if p1 > γ2/γ2+1

lim
δ→∞

JE,|·| (α
∗) =

1− p1
2

log2 (1 + γ2) (18)
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Proof. (i) Follows from Corollary 1 by setting δ = 1.

(ii) For 1 ≤ δ ≤ 1/p1,

JE,|·| (α
∗) =

p1
2

log2

(
1 + δγ2
1 + γ2

)
which is increasing in δ.

If p1 ≤ γ2/γ2+1 and δ ≥ 1/p1,

∂

∂δ
JE,|·| (α

∗) =
1− δ(p1 − γ2(1− p1))

2(δ − 1)δ(1 + δγ2)
≥ 0

for all δ ≥ 1/p1.

If p1 > γ2/γ2+1 and
1

p1
≤ δ ≤ 1

p1 − γ2(1− p1)

then
∂

∂δ
JE,|·| (α

∗) =
1− δ(p1 − γ2(1− p1))

2(δ − 1)δ(1 + δγ2)

which is non-negative over the assumed range for δ.

If p1 > γ2/γ2+1, then for

δ ≥ 1

p1 − γ2(1− p1)

we have

JE,|·| (α
∗) =

1− p1
2

log2 (1 + γ2)

(iii) If p1 ≤ γ2/γ2+1 then for δ ≥ 1/p1

JE,|·| (α
∗) =

p1
2

log2

(
(1 + δγ2)(1− p1)

p1(δ − 1)(1 + γ2)

)
+

1

2
log2

(
(1 + γ2)(δ − 1)

δ(1− p1)(1 + γ2)

)
which follows from (13), Prop. 1, and some algebraic simplification. If p1 > γ2/γ2+1 and δ > 1/p1−γ2(1−p1)
then α∗ = 1 and

JE,|·| (α
∗) =

1− p1
2

log2(1 + γ2)

which follows from Prop. 1. Taking the limits of both expressions gives the results of the proposition.

Proposition 3. For K = 2 and γ1 = δγ2 with δ ≥ 1, the expected capacity E [C( Γ )] is positive, monotonically
increasing in δ, and approaches ∞ as δ →∞.

Proof. Immediate from the properties of log2(x).

Proposition 4. For K = 2 and γ1 = δγ2 with δ ≥ 1, the fractional expected capacity loss J%,E (α) is:
(i) increasing in δ for 1 ≤ δ ≤ 1/p1; (ii) non-monotonic in δ, and; (iii)

lim
δ→∞

J%,E (α) = 0 (19)

Proof. (i) For 1 ≤ δ ≤ 1/p1 we have

∂

∂δ
J%,E (α) =

p1γ2C(γ2)

log(2)(1 + δγ2) (E [C (Γ)])
2 > 0. (20)

(ii) Follows from Propositions 2(ii), 2(iii), 3, & 4(i).

(iii) Follows from Propositions 2(iii) & 3.
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Figure 2: Minimum expected capacity loss (a) and minimum fractional expected capacity loss (b) as a
function of maximum SNR (γ1) and the number (K) of AMC levels. The minimum SNR was γK = 0 dB.

4 Results

In this section, we present plots of the minimum expected capacity loss and minimum fractional expected
capacity loss for general K and specifically for K = 2.

4.1 K-State Channel Results

Fig. 2a shows the minimum expected capacity loss and Fig. 2b shows the minimum fractional expected
capacity loss plotted as functions of γ1 in dB for different values of K. In both plots, γK = 0 dB and
γ2, . . . , γK−1 are evenly spaced (in dB) between γ1 and γK . The assumed prior distribution was the discrete
uniform distribution (i.e., pk = 1/K). From Fig. 2a, we observe that the minimum expected capacity loss
is increasing in γ1 and for small values of γ1 (i.e., γ1 ≤ 5 dB), the minimum expected capacity loss looks
linear in γ1 and independent of K. From Fig. 2b, we observe that, like Fig. 2a, for γ1 ≤ 5 dB, the minimum
fractional expected capacity loss looks linear in γ1 and independent of K. Unlike Fig. 2a, the minimum
fractional expected capacity loss is not monotonic in γ1.

4.2 Two-State Channel Results

For all plots in this section, p1 = 1/2 and show results for: (i) γ2 = −3 dB, shown in solid red line;
(ii) γ2 = 0 dB, shown in dashed blue line, and; (iii) γ2 = 3 dB, shown in dotted green line. . With this value
for p1 and the given values of γ2, we have the following three conditions: (i) p1 > γ2/γ2+1; (ii) p1 = γ2/γ2+1,
and; (iii) p1 < γ2/γ2+1.

Fig. 3c shows the value of α that minimizes both the expected capacity loss and fractional expected
capacity loss as a function of δ for the previously mentioned values of γ2. We observe from Fig. 3c, that α∗

is identically 0 for δ ≤ 3 dB (Prop. 1(i)) and is monotonically increasing in δ (Prop. 1(ii)). Additionally, we
see that α∗approaches the limits (i) 1 at δ = 6 dB for γ2 = −3 dB, (ii) 1 for γ2 = 0 dB, and (iii) 0.5 for
γ2 = 3 dB (Prop. 1(iii)).

Fig. 3a shows the expected capacity loss JE,|·| (α
∗) as a function of δ for the previously mentioned values

of γ2. We observe from Fig. 3a that JE,|·| (α
∗) = 0 for δ = 1 (0 dB) (Prop. 2(i)) and is monotonically

increasing in δ (Prop. 2(ii)). The expected capacity loss is bounded by (i) 0.1465 bits for γ2 = −3 dB,
(ii) 0.2500 bits for γ2 = 0 dB, and (iii) 0.3535 bits for γ2 = 3 dB (Prop. 2(iii)).

Fig. 4 shows the expected capacity loss E [C( Γ )] as a function of δ for the previously mentioned values
of γ2. We observe from Fig. 4 that E [C( Γ )] is positive, monotonically increasing in δ, and approaches ∞ as
δ →∞.
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Figure 3: Minimum expected capacity loss (a), minimum fractional expected capacity loss (b), and the
optimal power split (c) that solves (3) as a function of δ in dB for different values of γ2.

Fig. 3b shows the fractional expected capacity loss J%,E (α) as a function of δ for the previously mentioned
values of γ2. We observe from Fig. 3b that J%,E (α) is increasing in δ for 0 dB ≤ δ ≤ 3 dB (Prop. 4(i))
and is non-monotonic over the full range of δ (Prop. 4(ii)). We conclude by noting that while the fractional
expected capacity loss approaches the limit 0 as δ →∞ (Prop. 4(iii)), this convergence is rather slow.

5 Conclusions & Future Work

Using the K-user broadcast channel as a model for channel with K unknown states, we have characterized
the optimal power allocation across a family of fixed block length codes. In the case of K = 2, we have
shown that the spacing between the better SNR and the worst SNR must be above some threshold before
the optimal transmitter will allocate power to the codeword associated with the better SNR. Additionally,
we have shown that if the probability of being in the state with the better SNR is not high enough, the
optimal transmitter will never allocate its entire power budget for the codeword associated with the better
SNR. Looking at Fig. 2a and Fig. 2b, we observe that as the number of possible channel states gets large,
the minimum expected capacity loss and fractional expected capacity loss appear to be approaching some
limiting function. In subsequent work, we will use calculus of variations to characterize this limiting function
as K →∞. The case of an uncountably infinite number of AMC levels was handled for Rayleigh distributed
channel fades in [6]. Here we focused on a finite number of AMC values, and allow for an arbitrary distribution
on the associated SNRs.

8



0

1

2

3

4

5

0 5 10 15 20 25 30
b
it

s

Spacing between max and min SNR in dB

γ2 = −3 dB γ2 = 0 dB γ2 = 3 dB

Figure 4: Expected capacity E [C( Γ )] as a function of δ in dB for different values of γ2.

References

[1] Abbas El Gamal and Young-Han Kim, Network Information Theory, Cambridge University Press, 2011.

[2] Thomas M. Cover, “Broadcast channels,” IEEE Trans. Inf. Theory, vol. 18, no. 1, pp. 2–14, Jan. 1972.

[3] Sergio Verdú and Shlomo Shamai (Shitz), “Variable-rate channel capacity,” IEEE Trans. Inf. Theory,
vol. 56, no. 6, pp. 2651–2667, June 2010.

[4] Patrick P. Bergmans, “Random coding theorem for broadcast channels with degraded components,”
IEEE Trans. Inf. Theory, vol. 19, no. 2, pp. 197–207, Jan. 1973.

[5] Patrick P. Bergmans, “A simple converse for broadcast channels with additive white gaussian noise
(corresp.),” IEEE Trans. Inf. Theory, vol. 20, no. 2, pp. 279–280, March 1974.

[6] Shlomo Shamai (Shitz) and Avi Steiner, “A broadcast approach for a single-user slowly fading mimo
channel,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2617–2635, 2003.

9



A Worst-Case δ

Looking at Fig. 3b, we would like to characterize the δ that gives the largest fractional expected capacity
loss for the case of two channel states.

Conjecture 1. For K = 2 and γ1 = δγ2 with δ ≥ 1, the δ that gives the maximum fractional expected
capacity loss is the solution to the following non-linear equation

0 = (1− p1)(δγ2 + 1)(1− δp1) ln(γ2 + 1)

+ p1

(
(δ − 1)δγ2

(
ln

(
δ(γ2 + 1)(1− p1)

δ − 1

)
+ p1 ln

(
(δ − 1)p1

1− p1

))
+ (δγ2 + 1)(1− δp1) ln(δγ2 + 1)

) (21)

Proof Sketch. It is straight-forward to show that the right-hand side of (21) is the first derivative of J%,E (α)
with respect to δ when 0 < α∗ < 1. The numerical solution of (21) matches with the observed maximum
values from Fig. 3b. It remains to prove uniqueness of this stationary point.

B Counter-Proof for Convexity

Proposition 5. The expected capacity loss JE,|·| (α
∗) is, in general, not convex.

Proof. We construct the following counter example. Let K = 2 and γ1 = δγ2 for δ ≥ 1. We then have

∂2

∂δ2
JE,|·| (α

∗) =
γ22(δ(αγ2(δ((p1 − 1)αγ2 + 2p1)− 2) + p1δ)− 1)

ln(4)(αγ2 + 1)2(αγ2δ + 1)2
(22)

Letting p1 = 1/2, δ = 2, and γ2 = 1, the (22) becomes

∂2

∂δ2
JE,|·| (α

∗) =
1− 2α2

(2α2 + 3α+ 1)
2

ln(4)
(23)

which is positive for α < 1/
√
2 and is negative for α > 1/

√
2.

What is interesting, beyond the non-convexity of the expected capacity loss, is that this non-convexity
occurs for a non-pathological choice of the parameters p1, δ, and γ2.
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