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Introduction

Objective

Lossless transmission of correlated sources to sink over capacitated
network with minimum cost

R(si), h(si)

s1

s2

s3

s4

t

f(a), c(a), k(a)

a

D(V, A)

sink

sources

router/relay

minimize
f�0,R

X

a2A

k(a)f(a) +
X

s2S

h(s)R(s)

subject to f(a)  c(a) a 2 A

f(�in(v)) � f(�out(v)) = 0 v 2 N

R(s) + f(�in(s)) � f(�out(s)) = 0 s 2 S

R(U) � H(XU |XUc) U ✓ S

flow cost source cost

flow feasibility

rate feasibility
flow supports rate
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Introduction

Related Work
Slepian & Wolf (1973) through Ramamoorthy (2011)

Slepian and Wolf (1973) [1]
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R(s1)

R(s2)

• Rates for lossless recovery at
a single sink using separate
encoders
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Slepian & Wolf (1973) through Ramamoorthy (2011)

Han (1980) [2]
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cuts
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R(s1)

R(s2)

• Rates for lossless recovery at a
single sink using separate
encoders

• Over capacitated network

B. D. Boyle (Drexel MANL) P-D Char. Jointly Opt. Rate & Scheme DCC 2014 4 / 27



Introduction

Related Work
Slepian & Wolf (1973) through Ramamoorthy (2011)

Cristescu, Beferull-Lozano,
Vetterli (2005) [3]

a

cuts

X1

X2

E

E
D (X1, X2)

k

k

R⇤

R(s1)

R(s2)

• Rates for lossless recovery at a
single sink using separate
encoders

• Over capacitated
uncapacitated network

• Minimization of nonlinear
rate and flow objective over
feasible (rate, flow) region
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Introduction

Related Work
Slepian & Wolf (1973) through Ramamoorthy (2011)

Ramamoorthy (2011) [4]

a
X1

X2

E

E

D (X1, X2)

D (X1, X2)c, k

k

R⇤
R(s1)

R(s2)

Solution approach: dual decomposition

with subgradient descent

• Rates for lossless recovery at
single multiple sinks (w/
identical recovery req.) using
separate encoders

• Over uncapacitated
capacitated network

• Minimization of nonlinear linear
rate and flow objective over
feasible (rate, flow) region
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Introduction

Related Work
. . . & Many Others

1 Draper and Wornell (2004)—achievable lossy coding (Wyner-Ziv)
for correlated observations of a single source to a single sink over a
sensor network

2 Barros and Servetto (2006)—related formulation/results to Han
(1980), pose but don’t solve optimization problem over rate region

3 Ramamoorthy, Jain, Chou, Effros (2006)—distributed source
coding of multiple sources over network w/ lossless recovery at
multiple receivers (identical recovery req.)

4 Ho, Médard, Effros, Koetter (2006)—RLNC to multicast,
identifies RLNC error exponents as natural extensions of SW error
exponents

5 Han (2011)—extends Han (1980) from one to multiple sinks
(identical recovery req.)

. . . and many, many more
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Introduction

Summary of Results

minimize
f�0,R

X

a2A

k(a)f(a) +
X

s2S

h(s)R(s)

subject to f(a)  c(a) a 2 A

f(�in(v)) � f(�out(v)) = 0 v 2 N

R(s) + f(�in(s)) � f(�out(s)) = 0 s 2 S

R(U) � H(XU |XUc) U ✓ S

flow cost source cost

flow feasibility

rate feasibility
flow supports rate

Key Results

1 Structure of set of feasible rates R
2 Active & inactive constraints

3 Optimal primal-dual variables from reduced
costs

R(s1)

R(s2)

O
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Preliminaries

Achievable & Supportable Rates

R(s1)

R(s2)

Q�SW

Slepian-Wolf (1973)

• Set of achievable rates
• Contrapolymatorid associated

w/ σSW (U) = H(XU | XUc )

R(s1)

R(s2)

P⇢c

Meggido (1974) [5]

• Set of supportable rates

• Polymatroid associated w/
ρc(U) = c(min-cut(U))

Bijective map between source permutations π and vertices Rπ of
(contra)polymatroids (Edmonds 1970) [6]
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Preliminaries

Feasible Rates

Han (1980)

R(s1)

R(s2)

P⇢c

Q�SW

• Intersection non-empty iff
σSW (U) ≤ ρc(U)

• Achievability & converse proofs
for R ∈ R

Sufficiency Example

R(s1)

R(s2)

g  h

g not supermodular

g(U) ≤ h(U)

• necessary

• w/o sub-/supermodularity is
not sufficient
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Preliminaries

Efficient Transmission of Sources to Sink

minimize
f�0,R

X

a2A

k(a)f(a) +
X

s2S

h(s)R(s)

subject to f(a)  c(a) a 2 A

f(�in(v)) � f(�out(v)) = 0 v 2 N

R(s) + f(�in(s)) � f(�out(s)) = 0 s 2 S

R(U) � H(XU |XUc) U ✓ S

flow cost source cost

flow feasibility

rate feasibility
flow supports rate

• Linear program with |A|+ |V | − 1 + 2|S | inequalities
• If |S | = O(|V |), then the LP is exponential in the size of the graph

• Optimal solution (f ∗,R∗) will satisfy R∗(S) = H(XS) [2]
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Feasible Set Structural Properties

Partial vs. Full Overlap

Context:

• Han (1980) characterizes empty vs. non-empty R
• Q: When are all efficient vertices retained in the intersection?

Partial vs. Full Overlap
(Sufficient Condition)

R(s1)

R(s2)

R(s1)

R(s2)

A: A sufficient condition for full vs. partial overlap R
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Feasible Set Structural Properties

Cross Inequality

Proposition

Frank & Tardos (1988) [7] cross inequality implies rate region intersection
contains both base polytopes.

H(XU∩T | XUc ) ≤ ρc(T )− ρc(T \ U), ∀T ,U ⊆ S

Cross inequality specialzed to conditional entropy & min-cut capacity

U

T

U c
T \ U

S

⇢c(T )

⇢c(T \ U)

U \ T

H(XU\T | XUc)  ⇢c(T ) � ⇢c(T \ U)
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Feasible Set Structural Properties

Full Overlap & Generalized Polymatroids

R(s1)

R(s2)

R(s⇤)

O

R

B(P⇢0)

P⇢0

P⇢c

Fujishige (2005) [8]

• Cross-inequality satisfied ⇒ R is a generalized polymatroid

• R is projection of a base polytope of polymatroid
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Feasible Set Structural Properties

Full Overlap & Generalized Polymatroids

Proposition

Satisfying cross inequality ⇒
• Extreme points of R are known

• The LP

min
R∈R

∑

s∈S
h(s)R(s)

has an explicitly characterized
solution (via Edmonds 1970)

R(s1)

R(s2)

R

h|R

Takeaway: Cross inequality ⇒ soln. is SW vertex; network capacities
non-binding

R = {R : H(XU |XUc ) ≤ R(U) ≤ ρc(U), U ⊆ S}
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Feasible Set Structural Properties

Active & Inactive Constraints

Polyhedral rate region

• Slepian & Wolf gives half-space representation

• Greedy algorithm gives vertex representation (Edmonds 1970) [6]

• A degenerate vertex has > |S | active inequalities
R(s2)

R(s1)

R(s2)

R(s1)

non-degenerate vertex 
(2 active constraints)

degenerate vertex 
(3 active constraints)

Q: For which U ⊆ S will SW constraint R(U) ≥ H(XU |XUc ) be (in)active
at vertex Rπ of RSW ?
A: Tightness of each SW constraint at each vertex is determinable from π
and the source conditional independence (C.I.) structure
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Feasible Set Structural Properties

Which R(U) are tight at vertex Rπ of RSW?

Fix perm. π = (1, 2, 3); let Rπ = (H(X1 | X2,X3),H(X2 | X3),H(X3))

O
R(s1)

R(s2)

R(s3)

R⇡

π gives 3 necessarily active constraints at Rπ:

Rπ(1) = H(X1 | X2,X3)

Rπ(1) + Rπ(2) = H(X1,X2 | X3)

Rπ(1) + Rπ(2) + Rπ(3) = H(X1,X2,X3)

But there may be additional active const. at Rπ.

Proposition

Given π and U = {sk1 , . . . , skm} ⊆ S , let Ui = {s1, . . . , si ); then

Rπ(U) = H(XU |XUc )⇔ (XU\Ukj−1
⊥ XUkj−1\Ukj−1

)|XUc
kj\U

, j = 1, . . . ,m.

Example: Rπ(2) = H(X2|X1,X3) iff (X2 ⊥ X1)|X3

Takeaway: Constraint U tightness at Rπ determined by π & CI structure.
B. D. Boyle (Drexel MANL) P-D Char. Jointly Opt. Rate & Scheme DCC 2014 17 / 27



Sufficient Conditions for Characterizing Optimality

Outline

1 Introduction

2 Preliminaries

3 Feasible Set Structural Properties

4 Sufficient Conditions for Characterizing Optimality

5 Conclusion

6 References

B. D. Boyle (Drexel MANL) P-D Char. Jointly Opt. Rate & Scheme DCC 2014 18 / 27



Sufficient Conditions for Characterizing Optimality

Dual LP

Problem: “direct” solution techniques not computationally feasible:

• Exhaustive direct search: evaluate cost at each of |S |! rate vertices

• Primal-dual approach: find (P,D) variables that are (P,D) feasible and
satisfy complementary slackness—|V |+ |A|+ 2|S | dual vars.

maximize
x≤0,y≥0,z

∑

a∈A
c(a)x(a) +

∑

U⊆S
H(XU |XUc )yU

subject to x(a) + z(head(a))− z(tail(a)) ≤ k(a) a ∈ A
∑

U3s
yU + z(s)− z(t) = h(s) s ∈ S

1 x(a)⇒ flow under capacity

2 z(v)⇒ conservation of flow at node

3 yU ⇒ Slepian-Wolf feasibility
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Sufficient Conditions for Characterizing Optimality

Reduced Costs

Let

k̄(a, z) , k(a)− (z(head(a))− z(tail(a)))

h̄(s, z) , h(s)− (z(s)− z(t))

and rewrite

maximize
x≤0,y≥0,z

∑

a∈A
c(a)x(a) +

∑

U⊆S
H(XU |XUc )yU

subject to x(a) ≤ k̄(a, z) a ∈ A
∑

U3s
yU = h̄(s, z) s ∈ S

Obsv: x∗(a) = min(0, k̄(a, z∗))—we can eliminate |A| of the dual
variables Q: Can we do the same with yU? A: Yes!
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Sufficient Conditions for Characterizing Optimality

Optimal Primal-Dual Vars. via Reduced Costs

Recall: Inactive const. ⇒ y∗U = 0
Source permutation π gives |S | necessarily active const. at Rπ

Proposition

A feasible vertex Rπ and associated min-cost flow f ∗π is optimal if there
exists z : V → R and reduced costs satisfying

k̄(a) < 0 =⇒ f ∗π (a) = c(a) k̄(a) > 0 =⇒ f ∗π (a) = 0

and h̄(sπ(1)) ≥ h̄(sπ(2)) ≥ · · · ≥ h̄(sπ(n)) ≥ 0.

Value: Potential on |V | nodes builds |V |+ |A|+ 2|S| (P,D) solutions.
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Sufficient Conditions for Characterizing Optimality

Optimal Primal-Dual Vars. via Reduced Costs
An Example

k(a1) = 1.0 k(a2) = 2.0 k(a3) = 2.0 k(a4) = 4.0

h(s1) = 2.00 h(s2) = 1.25 h(s3) = 0.50

f⇤ =
⇥
0.5 0.01 1.48 0.67

⇤
f⇤ =

⇥
0.51 0.00 1.49 0.66

⇤

R⇤ =
⇥
0.51 0.98 0.66

⇤

k̄ =
⇥
�3 0 0 0

⇤
k̄ =

⇥
0 0 0 0

⇤

h̄ =
⇥
8 1.25 4.5

⇤
h̄ =

⇥
5 1.25 4.5

⇤

vertex of SW region for
s1, s3, s2

reduced arc costs

reduced source costs

arc costs

source costs

1.500.50

1.500.55

ts1

s2

s3

a2

a1 a3
a4

1.50

1.50

0.50

0.50

ts1

s2

s3

a2

a1 a3
a4
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Conclusion

Conclusion

1 Goal: Leverage the combinatorial structure of the contrapolymatroid
achievable rate region and the polymatroid supportable rate region to
provide explicit solutions for (flow,rate) linear programs.

2 Current (partial) results:
1 Structure of feasible set of rates
2 Identify (in)active constraints at each rate vertex
3 Efficient characterization of optimality via primal-dual and reduced

costs

3 Extensions: Even more explicit characterizations of feasible set and
LP solutions
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