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Abstract
We consider the optimal transmission of distributed correlated discrete memoryless sources
across a network with capacity constraints. We present several previously undiscussed
structural properties of the set of feasible rates and transmission schemes. These properties
are then applied to develop a characterization of an optimal solution and its connection to
the corner points of the Slepian-Wolf rate region.

1 Introduction

A class of problems that arise in many contexts is the transmission of distributed
discrete memoryless sources across a capacity-constrained network to a collection of
sinks. Information theoretic characterizations of this class of problems has received
much attention in recent years as a result of the development of network coding [1],
and can be traced back to the seminal work of Slepian and Wolf [2]. In this paper,
we consider the design problem of selecting a set of rates and a transmission scheme
for a given network that are optimal with respect to known information-theoretic
characterizations. A necessary assumption is that all sinks want all sources. The
general case where different sinks wish to receive different subsets of the sources has
an implicit characterization in terms of the region of entropic vectors and only inner
and outer bounds are known explicitly [3, 4].

Han considers the problem of communicating a distributed set of correlated sources
to a single sink across a capacity-constrained network and characterizes the set of
achievable rates [5]. For a single sink, it is known that the min-cut/max-flow bounds
can be achieved [4] and in particular, Slepian-Wolf (SW) style source coding [2] fol-
lowed by routing is sufficient [5]. Han proposes a minimum-cost problem where link
activations are charged a per unit cost and cites work by Fujishige [6] as an algo-
rithmic solution to the proposed problem. The proposed algorithm can be applied
to problems with both link and source costs; it cannot, however, be extended to the
case of multiple sinks. Additionally, the algorithm is only guaranteed to terminate
in finite time if the data are assumed integral [6]. Barros et al. contains a similar
characterization of the set of achievable rates and an identical LP formulation as [5]
but no discussion of an efficient solution [7].

When the problem is extended from a single sink to multiple sinks, each required
to receive all the sources, it is known that in general routing is not sufficient for
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achieving the min-cut/max-flow bounds and that network coding is necessary [1] and
in fact linear network coding is sufficient [4]. Identical characterizations of when a
distributed correlated source can be multicast across a capacity-constrained network
have been given by Song et al., Ramamoorthy, and Han [3, 8, 9]. These character-
izations are a natural extension of the result for a single sink [5]. Earlier work by
Cristescu et al. also considers the problem of SW coding across a network with links
that were not capacity-constrained [10]. This allows for an optimal solution to be
obtained as the superposition of minimum weight spanning trees. Two key differ-
ences between the work of Ramamoorthy [8] and Han [9] are that the former makes
the assumption of rational capacities to make use of results from [11] and specifi-
cally considers the problem of minimizing the cost to multicast the sources. Focusing
on lossless communication and assuming a linear objective, the cost to multicast the
sources can be formulated as an linear objective with per unit cost for activating links.
By not having a per source cost, the proposed LP can be solved by applying dual
decomposition to exploit the combinatorial structure of the SW rate-region associ-
ated with the correlated source and using the subgradient method to approximate the
optimal cost [8]. In the present work, we consider a more general model by including
a per unit rate cost for each source node. The technique of dual decomposition and
application of the subgradient method has been used in work by Yu et al. [12] and
Lun et al. [13]. Yu et al. considers the problem of lossy communication of a set of
sources and minimizes a cost function that trades off between the estimation distor-
tion and the transmit power of the nodes in the network. The rate-distortion region
is, in general, not polyhedral and the resulting optimization problem is convex. Lun
et al. makes the assumption of a single source and therefore does not deal with the
interdependencies among the different sources rates.

Previous works have only considered the dual with respect to a subset of the con-
straints in order to exploit the contrapolymatroidal structure of the SW rate-region.
In the present work, we restrict our attention to a single sink and more fully inves-
tigate the underlying combinatorial structure of the resulting set of achievable rates.
By considering the full dual LP, we demonstrate the application of the additional
structural properties towards the development of alternative algorithmic solutions.
Extension to the more general case with multiple sinks is left to future work.

2 Preliminaries

We model the network as a simple directed graph D = (V,A) with nodes V represent-
ing alternately sources, routers, and destinations, and arcs A representing connections
on the network between nodes. We model the arcs A as capacitated with capacity
c = (c(a), a ∈ A). If a = (u, v) ∈ A, then we define tail(a) , u and head(a) , v.

δout(v) , {a ∈ A : tail(a) = v} (1)

δin(v) , {a ∈ A : head(a) = v} (2)

The distributed sources are located at a subset S ⊂ V of the network elements
and need to be collected at a sink t ∈ V \ S. We model the sources as a collection



of correlated discrete memoryless random variables (Xs : s ∈ S). There is a joint
distribution p(Xs:s∈S) (shortened to just pS) on the set of sources which in turn gives
rise to a vector of conditional entropies (H(XU |XUc), U ⊆ S), where H(XU |XUc) is
the conditional entropy associated with the subset of sources U ⊆ S given the values
of the other sources U c = S \ U .

The decision variables in our model are both i) the rates for each source, R =
(R(s), s ∈ S), and ii) the flow on each arc, f = (f(a), a ∈ A). The rate R(s)
is the rate at which source s transmits, which must be routed (possibly split over
multiple paths) towards the destination t, and the flow f(a) is the superposition over
all rates R(s) whose routes traverse arc a. Flows must satisfy: i) capacity constraints
(0 ≤ f(a) ≤ c(a) for all a ∈ A), and ii) conservation of flow at all non-source, non-sink
nodes (f(δout(v)) = f(δin(v)) for all v ∈ V \(S∪{t})). A flow f supports rates R if for
all s ∈ S, R(s) = f(δout(s))−f(δin(s)) The novelty lies in jointly optimizing over both
(f,R) simultaneously, since most of the network flow literature assumes the source
rates to be an input to the flow problem. While the multi-source network coding
problem includes variables for both source rates and edge rates (analogous to our
flow variables), much of the network coding literature has focused on characterizing
the region obtained by projecting onto either the source rate or edge rate variables.
Our work focuses on the cases where rate regions are known and expressly consider
the problem of joint optimization without the projection onto one set of variables.
For the case of multiple sinks, routing will no longer be sufficient and we will need to
consider network coding. In this case, there will be a “virtual” flow ft for each sink t
satisfying the normal flow constraints. Under network coding, the physical flow f(a)
on an arc a will then satisfy ft(a) ≤ f(a) for all t [13].

We begin with the Slepian-Wolf theorem, which characterizes of the set of source
rates for which lossless distributed source codes exist.

Theorem 1 (Slepian-Wolf [2]). The rate region RSW for distributed lossless source
coding the discrete memoryless sources XS is the set of rate tuples R such that

R(U) ≥ H(XU |XS\U) ∀ U ⊆ S. (3)

For brevity, let us define σSW : 2|S| → R as

σSW (U) , H(XU |XUc) (4)

which is a nonnegative, nondecreasing supermodular set function on the set of sources.
Note that the rate region of Theorem 1 is the contrapolymatroid associated with σSW .

RSW = QσSW
,
{
R ∈ R|S| : R(U) ≥ σSW (U), ∀ U ⊆ S

}
(5)

The following theorem characterizes the set of source rates for which there exists
a supporting flow.

Theorem 2 (Megiddo [14]). There exists a flow f that supports the rates R iff

R(U) ≤ min{c(δout(X)) : U ⊆ X, t ∈ V \X} ∀ U ⊆ S. (6)



Paralleling (4), define ρc : 2|S| → R as

ρc(U) = min{c(δout(X)) : U ⊆ X, t ∈ V \X} (7)

This is the min-cut capacity/max-flow value from the set U to the sink t, which is a
nonnegative, nondecreasing submodular set function on the set of sources. The set
of source rates for which there exists a supporting flow is

Pρc =
{
R ∈ R|S| : R ≥ 0, R(U) ≤ ρc(U), ∀ U ⊆ S

}
(8)

The final theorem in this section characterizes when the intersection of the sets of
source rates from the previous two theorems is non-empty.

Theorem 3 (Han’s Matching Condition [5]). Let σ and ρ be supermodular and sub-
modular set functions, respectively. Then

Qσ ∩ Pρ 6= ∅ (9)

if and only if
σ(U) ≤ ρ(U) U ⊆ S (10)

In particular, there exists distributed lossless source codes for communicating the
sources XS across the network to the sink t iff σSW (U) ≤ ρc(U) for all U ⊆ S.

As mentioned in [5], the proof of Theorem 3 depends critically on the submodu-
larity of ρ and supermodularity of σ.

Our objective is to route the information from the sources S to the sink t as
efficiently as possible, which we measure via costs on both the rate of the sources,
and the costs of activating the arcs. Specifically, let h = (h(s), s ∈ S) be the cost
per bit per second associated with each source, and k = (k(a), a ∈ A) be the cost per
unit flow associated with each arc.

With this notation, the cost of a solution (f,R) is kTf + hTR. The constraints
are the natural ones given the model description above: i) flows must observe the arc
capacity constraints f ≤ c, ii) flows f and rates R must satisfy conservation of flow
at all router nodes v ∈ V \ (S ∪ t), iii) the flows and rates must match at the sources,
so that the inflow plus the source rate equals the outflow, and iv) the rates must be
large enough to fully describe the source entropies R(U) ≥ H(XU |XUc) for all U ⊆ S.
By only considering a single sink, we only need to find one flow vector f . For the
general network coding case, the model can be extended in a natural way to account
for the “virtual” flow for each sink and the physical flow on each arc.

The linear program described above is as follows:

minimize
f≥0,R

∑
a∈A

k(a)f(a) +
∑
s∈S

h(s)R(s)

subject to f(a) ≤ c(a) a ∈ A
f(δin(v))− f(δout(v)) = 0 v ∈ N
R(s) + f(δin(s))− f(δout(s)) = 0 s ∈ S
R(U) ≥ H(XU |XUc) U ⊆ S

(11)



where N , V \ (S ∪ {t}), f(δ(v)) ,
∑

a∈δ(v) f(a), and R(U) ,
∑

s∈U R(s), U ⊆ S.

The linear program in (11) has |A| + |V | − 1 + 2|S| inequalities. If |S| = O(|V |),
then the LP is exponential in the size of the graph. Observe that an optimal solution
(f ∗, R∗) to (11) will satisfy R∗(S) = H(XS) [5].

3 Feasible Set Structural Properties

We see from Theorem 1 and Theorem 2 that the set of feasible rates QσSW
∩ Pρc

is the intersection of a polymatroid with a contrapolymatroid. This polytope can
be thought of as being obtained by the projection p : R|A|+|S| → R|S| of the set of
feasible (f,R) tuples onto the rate variables R. In this section we present several
structural properties of the set of feasible (f,R) and the associated lower dimensional
set QσSW

∩ Pρc that are independent of the assumed objective function in (11).
For any polyhedron P , we denote the set of extreme points as Ext(P ). The

extreme points (vertices) of a contrapolymatroid Qσ are given by

Rπ(sπ(i)) = σ({sπ(1), . . . , sπ(i)})− σ({sπ(1), . . . , sπ(i−1)}) i = 1, . . . , |S| (12)

where π ranges over all permutations of [|S|] [15]1. The extreme rays of Qσ are the
unit vectors of R|S|. Similarly, the extreme points of a polymatroid Pρ are given by

Rπ(sπ(i)) =

{
ρ({sπ(1), . . . , sπ(i)})− ρ({sπ(1), . . . , sπ(i−1)}) i ≤ k

0 i > k
(13)

where π ranges over all permutations of [|S|] and where k ranges over 0, . . . , |S| [15].
The base polyhedron of Qσ and Pρ is defined as [16]

B(Qσ) , Qσ ∩ {R : R(S) = σ(S)} (14)

B(Pρ) , Pρ ∩ {R : R(S) = ρ(S)}. (15)

In general, (10) does not allow us to conclude if the base polyhedron of a con-
trapolymatroid B(Qσ) is wholly contained in the intersection Qσ ∩ Pρ. To see this,
let us consider S = {s1, s2} and let ρ be submodular and σ supermodular such that
σ(U) ≤ ρ(U) for all U ⊆ S. Consider the vertex R = (σ(s1), σ(s1, s2) − σ(s1))
of Qσ. We have, by the assumption of (10) that R(s1) = σ(s1) ≤ ρ(s1) and
R(s1) + R(s2) = σ(s1, s2) ≤ ρ(s1, s2). From the supermodularity of σ, we have
that σ(s2) ≤ σ(s1, s2) − σ(s1) and by assumption σ(s2) ≤ ρ(s2); this does not allow
us to conclude one way or the other if σ(s1, s2)− σ(s1) ≷ ρ(s2) and so we cannot, in
general, determine if R ∈ Pρ and therefore R ∈ Qσ ∩ Pρ. Our first theorem provides
a sufficient condition for B(Qσ) and B(Pρ) to be contained in Qσ ∩ Pσ.

Theorem 4. Let σ be supermodular set function and ρ be a submodular set function.
If

σ(Y )− σ(Y \X) ≤ ρ(X)− ρ(X \ Y ) ∀ X, Y ⊆ S (16)

then Ext(B(Qσ)) ⊆ Qσ ∩ Pρ and Ext(B(Pρ)) ⊆ Qσ ∩ Pρ.
1For an integer i, the set {1, . . . , i} is denoted by [i].
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Figure 1: An example of Theorems 3 & 4: (a) A (σ, ρ) pair that does not satisfy (10);
(b) A (σ, ρ) pair that satisfies (10); and; (c) A (σ, ρ) pairs that satisfies (16).

Proof. See Appendix A.1

Remark. Observe that Ext(Qσ) = Ext(B(Qσ)). The requirement of this lemma (16)
implies Han’s matching condition (10). To see this, let X = Y = U in (16). Figure 1
provides an example that illustrates the differences between Theorems 3 & 4. Theo-
rem 4, beyond identifying a subset of the extreme points of the set of feasible rates,
allows us to prove the optimality of the greedy algorithm for certain instances of (11).

For σ and ρ that satisfies the conditions of Theorem 4, the set Qσ ∩ Pρ is a
generalized polymatroid [17], a mathematical object that unifies polymatroids and
contrapolymatroids [15]. For every generalized polymatroid in R|S|, there exists a
submodular set function ρ′ : 2|S|+1 → R and a projection p : R|S|+1 → R|S| such that
p(B(Pρ′)) is equal to that generalized polymatroid [16]. This implies that optimizing
a linear objective over a generalized polymatroid is no more difficult than maximizing
a linear objective over the associated polymatroid Pρ′ , and the greedy algorithm for
polymatroids can be used to solve LPs over generalized polymatroids in a straight-
forward manner. This property is at the heart of the proof of the following proposition.

Proposition 1. Let σ and ρ satisfy the conditions of Theorem 4 and consider the
LP given by

minimize
R

∑
s∈S

w(s)R(s)

subject to σ(U) ≤ R(U) ≤ ρ(U) U ⊆ S.

(17)

If w(s) ≥ 0 for all s ∈ S, then there exists R∗ ∈ Ext(Qσ) that is an optimal solution
to the given LP. If w(s) ≤ 0 for all s ∈ S, then there exists R∗ ∈ Ext(B(Pρ)) that is
an optimal solution to the given LP.

Proof. See Appendix A.2

The next lemma establishes that a convex combination of rates can be supported
by a convex combination of supporting flows.



Lemma 1. Suppose Ri ∈ QσSW ∩ Pρc and let fi be a flow that supports Ri. If
Rλ =

∑
i λiRi for λi ≥ 0 and

∑
i λi = 1 then fλ =

∑
i λifi is a flow that supports Rλ.

For an extreme point R of QσSW
, we provide an expression for the sum rate for an

arbitrary set of sources and then use this to characterize the active inequalities at R.

Lemma 2. Fix an ordering s1, s2, . . . , sn of the elements of S and define Ui ,
{sj : j ∈ [i]}. If R is the vertex in QσSW

corresponding to this ordering and U =
{sk1 , · · · , skm} such that k1 < k2 < . . . < km then

R(U) = H(XU |XUc
k1
\U) +

m∑
j=2

I(XU\Ukj−1
;XUkj−1\Ukj−1

|XUc
kj
\U) (18)

Proof. See Appendix A.3

Corollary 1. If R is the vertex corresponding to permutation π then

R(Ui) = H(XUi
|XUc

i
). (19)

Proof. See Appendix A.4

Proposition 2. Fix an ordering s1, s2, . . . , sn of the elements of S and define Ui ,
{sj : j ∈ [i]} and U0 = ∅. Let R be the vertex in QσSW

that corresponds to this
ordering and U = {sk1 , · · · , skm} such that k1 < k2 < . . . < km. Define k0 , 0. If
U = Ui for some i ∈ [n], then R(U) = H(XU |XUc). If U 6= Ui for some i, then
R(U) = H(XU |Xc

U) if and only if

(XU\Ukj−1
⊥ XUkj−1\Ukj−1

)|XUc
kj
\U j = 1, . . . ,m. (20)

Proof. From the Lemma 2, we have that

R(U)−H(XU |XUc) =
m∑
j=1

I(XU\Ukj−1
;XUkj−1\Ukj−1

|XUc
kj
\U) ≥ 0.

The above is a sum of conditional mutual informations which is zero iff each of the
terms is equal to zero. This happens when the random variables XU satisfies (20).

The previous proposition will be used in the next section when giving conditions
for a feasible solution to (11) to be optimal.

4 Sufficient Conditions for Characterizing Optimality

We proceed by finding the dual LP of the primal given in (11). In (11), we have
three types of constraints: i) a capacity constraint for each edge, ii) flow conservation
for each node, and iii) rate requirements for each subset of sources. The dual, then,



will have three types of dual variables: i) (x(a) : a ∈ A), ii) (z(v) : v ∈ V ), and
iii) (yU : U ⊂ S). The dual LP is given as

maximize
x≤0,y≥0,z

∑
a∈A

c(a)x(a) +
∑
U⊆S

H(XU |XUc)yU

subject to x(a) + z(head(a))− z(tail(a)) ≤ k(a) a ∈ A∑
U3s

yU + z(s)− z(t) = h(s) s ∈ S

(21)

We set z(t) = 0 because it is associated with the conservation of flow constraint at
the sink, which is omitted from (11) as it is a consequence of the equality constraints
at every other node. Observe that the number of dual variables is exponential in |S|.
We now show that, in a certain sense, the dual variables x(a) for a ∈ A and yU for
U ⊆ S are unnecessary.

Let us define the reduced cost of a ∈ A as

k̄(a) , k(a)− (z(head(a))− z(tail(a))) (22)

and observe that the first set of constraints of (21) can be written as x(a) ≤ k̄(a)
for all a ∈ A [18]. Combined with the non-positivity constraint on x(a) we have
x(a) ≤ min(0, k̄(a)). Since we are maximizing in (21) and c(a) > 0 for all a, we take

x(a) = min(0, k̄(a)) (23)

and see that the dual variable x(a) can be expressed in terms of (z(v) : v ∈ V ). As
we show in the next theorem, characterizations of optimal solutions do not need to
explicitly consider the dual variables (x(a) : a ∈ A).

Theorem 5. Let f ∗Ri
be a min-cost flow that supports rate Ri. Let R =

∑
i λiRi. The

flow f =
∑

i λif
∗
Ri

is a flow that supports R of minimum cost if there exists a vector
(z(v) : v ∈ V ) such that for all i

k̄(a) < 0 =⇒ f ∗Ri
(a) = c(a) (24a)

k̄(a) > 0 =⇒ f ∗Ri
(a) = 0. (24b)

Proof. See Appendix A.6

Since we are considering the rates to be fixed in the previous theorem, there are no
dual variables (yU : U ⊆ S). If the conditional entropies of the sources and the min-
cut capacities satisfy the requirements of Theorem 4, then all of the extreme points
of QσSW

are feasible for (11). As was mentioned earlier, if (f ∗, R∗) is an optimal
solution to (11) then R∗(S) = H(XS) [5] and therefore R∗ can be written as a convex
combination of the extreme points of QσSW

. The previous theorem shows that in
certain cases, f ∗ can be found as a convex combination of the min-cost flows for the
extreme points of the SW rate region.

We now define the reduced cost of s ∈ S as

h̄(s) , h(s)− (z(s)− z(t)) = h(s)− z(s) (25)



and rewrite the second set of constraints of (21) as∑
U3s

yU = h̄(s). (26)

We seek to express the dual variables yU as function of the dual variables z(s) as we
did for the dual variables x(a). The following theorem provides a characterization of
which of the dual variables yU must be zero as a function of the correlation structure
of the source random variables.

Theorem 6. Suppose R∗ is primal optimal and y∗ is dual optimal and let U =
{sk1 , · · · , skm} such that k1 < k2 < . . . < km. If R∗ is a vertex of QσSW

and there
exists j ∈ [m] such that

(XU\Ukj−1
6⊥ XUkj−1\Ukj−1

)|XUc
kj
\U (27)

then y∗U = 0.

Proof. Follows immediately from complimentary slackness and Proposition 2.

This characterization suggests the following sufficient condition for an extreme
point Rπ of the SW rate region QσSW

and its associated min-cost flow f ∗π to be a
solution to (11).

Theorem 7. A feasible solution (f ∗π , Rπ) of (11) is optimal if there exists vectors
(z(v) : v ∈ V ) satisfying for each a ∈ A

k̄(a) < 0 =⇒ f ∗π(a) = c(a) (28a)

k̄(a) > 0 =⇒ f ∗π(a) = 0 (28b)

and
h̄(s1) ≥ h̄(s2) ≥ · · · ≥ h̄(sn) ≥ 0 (29)

where the elements of S are ordered according the permutation π.

Proof. Ordering the elements of S according to the permutation π induces a nested
family of subsets Ui , {sj : j ∈ [i]}. We construct a dual feasible y by setting yU = 0
for U not in the nested family and

yUi
=

{
h̄(si)− h̄(si+1) i ∈ [n− 1]

h̄(si) i = n.
(30)

We construct a dual feasible x from (23). Having primal feasible (f ∗π , Rπ) and dual
feasible (x, y, z), optimality follows from complimentary slackness.

The impact of the previous two theorems is that even though the dual has an
exponential number of variables, we need only consider a linear (in |V |) number of
them. Given (z∗(v) : v ∈ V ), we can compute (x∗(a) : a ∈ A) according to (23)
and (y∗U : U ⊆ S) according to (30). The extreme points of the SW rate region are
significant because codes that satisfy R(S) = H(XS) can be constructed from codes
for these points via time sharing.



5 Conclusion

In this paper, we have considered the transmission of distributed sources across a
network with capacity constraints. Previous works have only made use of the fact that
SW rate region is a contrapolymatroid as part of an iterative subgradient method. The
set of achievable rates is the intersection of the SW rate region with the polymatroid
defined by the min-cut capacities. We have established several structural properties of
this set that have not been previously reported. We have shown that these properties
lead to a characterization relating optimal solutions and the corner points of the SW
rate region. Unsurprisingly, this characterization is connected with the correlation
structure of the sources. Future work will more fully explore this connection and the
implications of different correlation structures (e.g., Markov random fields) on the
optimal solution and generalize to multiple sinks.
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A Omitted Proofs

A.1 Proof of Theorem 4

For the following set of lemmas, order the elements of S as s1, s2, . . . , sn arbitrarily
and define

Ui , {s1, . . . , si}. (31)

For an arbitrary U ⊆ S, let k be the largest index such that sk ∈ U and k′ be the
largest index such that sk′ ∈ U \ {sk}.

Lemma 3.
Uk′ ∩ (Uk \ U) = Uk′ \ (U \ {sk}) (32)

Proof.

Uk′ ∩ (Uk \ U) = Uk′ ∩ Uk ∩ U c

= Uk′ \ U
= Uk′ \ (U \ {sk})

Where the last step follows from sk /∈ Uk′ .

Lemma 4.
Uk′ ∪ (Uk \ U) = Uk−1 (33)

Proof. By definition, si /∈ U for i = k′+ 1, . . . , k−1 and therefore {sk′+1, . . . , sk−1} ⊆
Uk \ U . Therefore Uk′ ∪ (Uk \ U) = Uk−1.

Lemma 5. If σ is supermodular, then

σ(Uk−1)− σ(Uk′) + σ(Uk′ \ (U \ {sk})) ≥ σ(Uk \ U) (34)

Proof. Follows immediately from the supermodularity of σ and the previous two
lemmas.

Corollary 2. If ρ is submodular, then

ρ(Uk−1)− ρ(Uk′) + ρ(Uk′ \ (U \ {sk})) ≤ ρ(Uk \ U) (35)

Proof. If ρ is submodular, then −ρ is supermodular.

Lemma 6. If R({si}) = σ(Ui)− σ(Ui−1) for all i = 1, . . . , n, then for all non-empty
U ⊆ S we have

R(U) ≤ σ(Uk)− σ(Uk \ U) (36)

where k is the largest index such that sk ∈ U .



Proof. Proof by induction on |U |. Base case: If |U | = 1,then we have U = {sk} and
Uk \ U = Uk−1. By the assumption of R being a vertex, we have that R({sk}) ,
σ(Uk)− σ(Uk−1) and the assertion is trivially true.

Inductive step: We have that

R(U) = R({sk}) +R(U \ {sk})
= σ(Uk)− σ(Uk−1) +R(U \ {sk})
≤ σ(Uk)− σ(Uk−1) + σ(Uk′)− σ(Uk′ \ (U \ {sk}))
≤ σ(Uk)− σ(Uk \ U)

where the second to last step follows from the inductive hypothesis and the last step
from the previous lemma.

The point R in the previous lemma is the vertex of Qσ corresponding to the order
of the elements of S s1, . . . , sn. Our choice of this ordering was arbitrary, so this
lemma means that the given inequality is true for any vertex.

Corollary 3. If R({si}) = ρ(Ui)−ρ(Ui−1) for all i = 1, . . . , n, then for all non-empty
U ⊆ S we have

R(U) ≥ ρ(Uk)− ρ(Uk \ U) (37)

where k is the largest index such that sk ∈ U .

Proof. Proof by induction on |U |. Base case: If |U | = 1, then we have U = {sk}
and Uk \ U = Uk−1. By the assumption of R being a vertex, we have that R({sk}) ,
ρ(Uk)− ρ(Uk−1) and the assertion is trivially true.

Inductive step: We have that

R(U) = R({sk}) +R(U \ {sk})
= ρ(Uk)− ρ(Uk−1) +R(U \ {sk})
≥ ρ(Uk)− ρ(Uk−1) + ρ(Uk′)− ρ(Uk′ \ (U \ {sk}))
≥ ρ(Uk)− ρ(Uk \ U)

where the second to last step follows from the inductive hypothesis and the last step
from the previous corollary.

Proof of Theorem 4 . We will show that all the vertices of Qσ (which have the prop-
erty that R(S) = σ(S)) are elements of Pρ. All the vertices of Qσ are the vertices of
B(Qσ). Then by the convexity of Pρ, we will have that B(Qσ) ⊆ Pρ and therefore
B(Qσ) ⊆ Pρ ∩Qσ. Note that we assume w.l.o.g. that ρ(∅) = σ(∅) = 0.

Let R be a vertex of Qσ and apply strong compliance inequality result to the
result of the previous lemma; we have

R(T ) ≤ σ(Uk)− σ(Uk \ T )

≤ ρ(T )− ρ(T \ Uk)
= ρ(T )



We conclude then that every vertex of Qσ is an element of Pρ. As Pρ is convex, the
convex hull of the vertices of Qσ, which is B(Qσ), is contained in Pρ.

Let R be a vertex of B(Pρ) and apply strong compliance inequality result to the
result of the previous corollary; we have

R(T ) ≥ ρ(Uk)− ρ(Uk \ T )

≥ σ(T )− σ(T \ Uk)
= σ(T )

We conclude then that every vertex of B(Pρ) is an element of Qσ. As Qσ is convex,
the convex hull of the vertices of B(Pρ), which is B(Pρ), is contained in Qσ.

A.2 Proof of Proposition 1

Proof. Assuming σ and ρ satisfy the condition of Theorem 4, we have that Qσ ∩ Pρ
is non-empty. Let us define S ′ = S ∪ {s∗} and

f(U) =

{
ρ(U) U ∈ 2S

γ − σ(S ′ \ U) U ⊂ S ′, s∗ ∈ U
(38)

where γ ∈ R is arbitrary but fixed. Such a f is a submodular function on 2S
′

and
B(EPf ) = EPf ∩ {R : R(S) = f(S)} 2 is non-empty [16]. In fact

Qσ ∩ Pρ =
{
R ∈ R|S| : ∃α ∈ R : (R,α) ∈ B(EPf )

}
. (39)

We now rewrite (17) as

minimize
R

∑
s∈S

w(s)R(s) + 0 · α

subject to (R,α) ∈ B(EPf )

and proceed by applying the greedy algorithm [16]. Assuming w(s) ≥ 0 for all s ∈ S,
we order the elements of S as s1, . . . , sn such that 0 , w(s∗) ≤ w(s1) · · · ≤ w(sn).
Let

α = γ − σ(S)

R∗(si) = σ({si, . . . , sn})− σ({si+1, . . . , sn}) i = 1, . . . , n;

such an R∗ is an optimal solution to the given LP. This is the vertex of Qσ cor-
responding to the permutation of the elements of S given by π(i) = n + 1 − i. If
instead w(s) ≤ 0 for all s ∈ S, we order the elements of S as s1, . . . , sn such that
≤ w(s1) · · · ≤ w(sn) ≤ w(s∗) = 0. Let

R∗(si) = ρ({s1, . . . , si})− ρ({s1, . . . , si−1}) i = 1, . . . , n

α = γ − ρ(S);

such an R∗ is an optimal solution to the given LP. This is the vertex of B(Pρ) corre-
sponding to the permutation of the elements of S given by π(i) = i.

2The set EPf = {R ∈ R|S′| : R(U) ≤ f(U)} is the extended polymatroid associated with f while

Pf = {x ∈ R|S′| : R ≥ 0, R(U) ≤ f(U)} is the polymatroid associated with f .



Remark. The function f constructed in the proof satisfies the requirement f(∅) ≥ 0
and therefore EPf is nonempty. If we take γ ≥ σ(S), then f(U ′) ≥ 0 for all U ′ ⊆
S ′ and Pf is nonempty. There is a one-to-one correspondence between nonempty
polymatroids and nondecreasing submodular functions [15]. That is, we can find a
nondecreasing submodular f̄ with f̄(∅) = 0 such that Pf = Pf̄ . These extra steps
are unnecessary for the proof, as simply appyling the greedy algorithm to B(EPf )
yields the required result.

A.3 Proof of Lemma 2

Recall from Lemma 2 that Ui , {sj : j ∈ [i]} and U = {sk1 , · · · , skm} such that
k1 < k2 < . . . < km. Let us define U ′ , U \ {sk1} = {sk′1 , · · · , sk′m′} where k′i = ki+1

and m′ = m− 1. We begin with three supporting lemmas.

Lemma 7.
U c
kj
\ U ′ = U c

kj
\ U (40)

Proof.

U c
kj
\ U = U c

kj
∩ ({sk1} ∪ U ′)c

= U c
kj
∩ ({sk1}c ∩ U

′c)

= U c
kj
∩ U ′c

The first step follows from the definition of U ′ and the last step from recognizing that
U c
kj
⊆ {sk1}c.

Lemma 8.
U ′ = U \ Uk1 (41)

Proof.
U \ Uk1 = U ∩ {sk1+1, sk1+2, . . . , sn} = {sk2 , · · · , skm} = U ′

Lemma 9.
U c = Uk1−1 ∪ U c

k1
\ U (42)

Proof.

Uk1−1 ∪ U c
k1
\ U = Uk1−1 ∪ (U c

k1
∩ U c)

= (Uk1−1 ∪ U c
k1

) ∩ (Uk1−1 ∪ U c)

= {sk1−1}c ∩ U c

= U c



Proof of Lemma 2 . Proof by induction on |U |. Base case: If |U | = 1, then U = {sk1}
and we have that

R(sk1) = H(XUk1
|XUc

k1
)−H(XUk1−1

|XUc
k1−1

)

= H(XUk1−1
, Xsk1

|XUc
k1

)−H(XUk1−1
|XUc

k1
, Xsk1

)

= H(Xsk1
|XUc

k1
)

= H(Xsk1
|XUc

k1
\{sk1})

where the last step follows from the fact that U c
i = U c

i \ {si}.
Inductive Step: Let us define U ′ , U \ {sk1} = {sk′1 , · · · , sk′m′} where k′i = ki+1

and m′ = m− 1. We have that

R(U) = R(sk1) +R(U ′)

(a)
= H(Xsk1

|XUc
k1

) +R(U ′)

(b)
= H(Xsk1

|XUc
k1

) +H(XU ′|XUc
k′1
\U ′)

+
m′−1∑
i=1

I(XU ′\Uk′
i

;XUk′
i+1
−1\Uk′

i

|XUc
k′
i+1
\U ′)

(c)
= H(Xsk1

|XUc
k1

) +H(XU ′ |XUk2−1\Uk1
, XUc

k′1
\U ′) + I(XU ′ ;XUk2−1\Uk1

|XUc
k′1
\U ′)

+
m′−1∑
i=1

I(XU ′\Uk′
i

;XUk′
i+1
−1\Uk′

i

|XUc
k′
i+1
\U ′)

(d)
= H(Xsk1

|XUc
k1

) +H(XU ′|XUk2−1\Uk1
, XUc

k2
\U ′) + I(XU ′ ;XUk2−1\Uk1

|XUc
k2
\U ′)

+
m′−1∑
i=1

I(XU ′\Uk′
i

;XUk′
i+1
−1\Uk′

i

|XUc
k′
i+1
\U ′)

(e)
= H(Xsk1

|XUc
k1
\U ′ , XU ′) +H(XU ′ |XUc

k1
\U ′) + I(XU ′ ;XUk2−1\Uk1

|XUc
k2
\U ′)

+
m′−1∑
i=1

I(XU ′\Uk′
i

;XUk′
i+1
−1\Uk′

i

|XUc
k′
i+1
\U ′)

(f)
= H(XU |XUc

k1
\U ′) + I(XU ′ ;XUk2−1\Uk1

|XUc
k2
\U ′)

+
m′−1∑
i=1

I(XU ′\Uk′
i

;XUk′
i+1
−1\Uk′

i

|XUc
k′
i+1
\U ′)

(g)
= H(XU |XUc

k1
\U ′) + I(XU ′ ;XUk2−1\Uk1

|XUc
k2
\U ′)

+
m−1∑
i=2

I(XU\Uki
;XUki+1−1\Uki

|XUc
ki+1
\U)



(h)
= H(XU |XUc

k1
\U ′) + I(XU\Uk1

;XUk2−1\Uk1
|XUc

k2
\U)

+
m−1∑
i=2

I(XU\Uki
;XUki+1−1\Uki

|XUc
ki+1
\U)

(i)
= H(XU |XUc

k1
\U) +

m−1∑
i=1

I(XU\Uki
;XUki+1−1\Uki

|XUc
ki+1
\U)

where: (a) follows from the definition of a vertex; (b) follows from the application
of the inductive hypothesis; (c) follows from the definition of conditional mutual
information; (d) U c

k′1
\ U ′ = U c

k2
\ U ′; (e) U ′ ⊆ U c

k1
so partition U c

k1
into U c

k1
\ U ′

and U ′; (f) follows from the chain rule for conditional entropy; (g) follows from a
change of variable for the sum index; (h) follows from expressing the conditional
mutual information in terms of the original set, and; (i) follows from moving the first
conditional mutual information into the sum.

Remark. We interpret the sets in the above expression

U c
k1
\ U = {sk1+1, . . . , sk2−1, sk2+1, . . . , skm−1, skm+1, . . . , sn}

U \ Ukj−1
= {skj , . . . , skm}

Ukj−1 \ Ukj−1
= {si : i = kj, . . . , kj − 1}

U c
kj
\ U = {skj+1, . . . , skj+1−1, skj+1+1, . . . , skm−1, skm+1, . . . , sn}

For concreteness, suppose n = 6 and U = {s2, s4, s6}. We have

U c
2 \ U = {s3, s5}

U \ Uk1 = U \ U2 = {s4, s6}
U \ Uk2 = U \ U4 = {s6}

Uk2−1 \ Uk1 = U3 \ U2 = {si : i = k1 + 1, . . . , k2 − 1} = {s3}
Uk3−1 \ Uk2 = U5 \ U4 = {si : i = k2 + 1, . . . , k3 − 1} = {s5}

U c
k2
\ U = {s5}

U c
k3
\ U = ∅

and R(U) = H(Xs2 , Xs4 , Xs6|Xs3 , Xs5) + I(Xs4 , Xs6 ;Xs3 |Xs5) + I(Xs6 ;Xs5).

A.4 Alternative proof of Corollary 1

Proof. For any supermodular set function we have

R(Ui) =
i∑

j=1

R(sπ(j)) =
i∑

j=1

σ(Uj)− σ(Uj−1) = σ(Ui)− σ(∅). (43)

If σ(U) = H(XU |Xc
U), the above is R(Ui) = H(XUi

|XUc
i
).



A.5 Full Proof of Proposition 2

Proof.

0 ≤ R(U)−H(XU |XUc)

= H(XU |XUc
k1
\U)−H(XU |XUc) +

m∑
j=2

I(XU\Ukj−1
;XUkj−1\Ukj−1

|XUc
kj
\U)

= H(XU |XUc
k1
\U)−H(XU |XUk1−1

, XUc
k1
\U) +

m∑
j=2

I(XU\Ukj−1
;XUkj−1\Ukj−1

|XUc
kj
\U)

= I(XU ;XUk1−1
|XUc

k1
\U) +

m∑
j=2

I(XU\Ukj−1
;XUkj−1\Ukj−1

|XUc
kj
\U)

=
m∑
j=1

I(XU\Ukj−1
;XUkj−1\Ukj−1

|XUc
kj
\U).

A.6 Proof of Theorem 5

This is a restatement of and proof of Theorem 5.

Theorem 8. Alternative to Conjecture Let f ∗Ri
be a min-cost flow that supports rate

Ri. Let R =
∑

i λiRi. The flow f =
∑

i λif
∗
Ri

is a flow that supports R of minimum
cost if there exists a vectors (x∗(a) : a ∈ A) and (z∗(v) : v ∈ V ) such that for all i

x∗(a)(f ∗Ri
(a)− c(a)) = 0 ∀ a ∈ A (44a)

(k(a)− x∗(a)− (z∗(head(a))− z∗(tail(a))))f ∗Ri
(a) = 0 ∀ a ∈ A. (44b)

Proof. Having fixed a rate vector Ri, we can solve for the min-cost flow for that rate
with following LP

minimize
f≥0

∑
a∈A

k(a)f(a)

subject to f(a) ≤ c(a) a ∈ A
f(δin(v))− f(δout(v)) = 0 v ∈ N
f(δin(v))− f(δout(s)) = −Ri(s) s ∈ S

(45)

and its corresponding dual

maximize
x≤0,z

∑
a∈A

c(a)x(a)−
∑
s∈S

Ri(s)z(s)

subject to x(a) + z(head(a))− z(tail(a)) ≤ k(a) a ∈ A.
(46)

If Ri is a feasible rate vector, then there exists a min-cost flow f ∗Ri
for this Ri and

therefore optimal dual variables (x∗Ri
, z∗Ri

). Observe that the set of feasible dual



variables does not depend on the rates Ri, only on the edge costs k. By assumption
x∗Ri

= x∗ and z∗Ri
= z∗ for all i and therefore (x∗, z∗) is dual feasible for R. We have

that by Lemma 1, that f is primal feasible. Checking the complimentary slackness
conditions for f , x∗, and z∗, we have

x∗(a)(f(a)− c(a)) = x∗(a)

(∑
i

λif
∗
Ri

(a)− c(a)

)
=
∑
i

λi
(
x∗(a)(f ∗Ri

(a)− c(a))
)

= 0

(47)
and similarly

(k(a)− x∗(a)− (z∗(head(a))− z∗(tail(a))))f ∗Ri
(a) = 0. (48)

We conclude that f is primal optimal and x∗, z∗ are dual optimal solutions for a
min-cost flow that supports R.


