Distributed Scalar Quantizers for Subband Allocation

Bradford D. Boyle bradford@drexel.edu

John MacLaren Walsh jwalsh@coe.drexel.edu Steven Weber sweber@coe.drexel.edu

Modeling & Analysis of Networks Laboratory Department of Electrical and Computer Engineering Drexel University, Philadelphia, PA 19104

Conference on Information Sciences & Systems Princeton, NJ March 20th, 2014

1 Introduction

- **2** Problem Model
- Optimal Scalar Quantizer Design Homogeneous Scalar Quantizers Heterogeneous Scalar Quantizers

4 Results

Motivation

- Subbands in an OFDMA system must be assigned to a unique MS
- AMC: BS wants MS w/ best channel & the gain on that channel
- Rateless codes (e.g., ARQ): BS wants MS w/ best channel

- BS does not need to reproduce MS local state
- Trade-off in feedback overhead & system efficiency

Related Work <u>CEO—Indirect Distributed Lossy</u> Source Coding

- $S_i \in \{1, \ldots, 2^{nR_i}\}$
- $Z = g(X_1, X_2), \ \hat{Z} = f(S_1, S_2)$
- $D = \mathbb{E}\left[d(Z, \hat{Z})\right], R = R_1 + R_2$
- \mathcal{R} achievable (R, D) pairs
- R(D) smallest R s.t. $(R, D) \in \mathcal{R}$

Cover & Thomas 2006 ([1]) and El Gamal & Kim 2011 ([2])

Related Work

Distributed Functional SQ & Layered Architectures

Zamir & Berger (1999) [3]

- Lossy, continous sources
- Lattice quantizers w/ Slepian-Wolf (SW) coding
- Optimal asymptotically in rate
- Servetto (2005) [4]
 - Lossy, discrete sources
 - Scalar quantizer w/ SW coding
 - Optimal for all rates
 - "Layered" Achievable Scheme

Scalar Quantizers at each user followed by entropy coding

Wagner et al. (2008) [5]

- Lossy (MSE), Gaussian sources
- Vector quantizers w/ SW coding
- Optimal for all rates

Misra et al. (2011) [6]

- Lossy (MSE), function of sources
- High rate regime
- Optimal asymptotically in rate

Introduction

Summary of Contributions

1. Distortion optimal HomSQs

3. HetSQs superior to HomSQs for i.i.d. sources R^{R}

2. Entropy-constrained HomSQs

4. HetSQ can be close to fundamental limit

1 Introduction

2 Problem Model

Optimal Scalar Quantizer Design Homogeneous Scalar Quantizers Heterogeneous Scalar Quantizers

4 Results

Problem Model

Problem Model & Notation

- X_i i.i.d. chan. capacity for MS i
- Z optimal subband allocation

$$Z = \arg\max_i \{X_i : i = 1, 2\}$$

- \hat{Z} estimated subband allocation
- S_i coded message from MS i
- R_i rate achieved by MS i
- d distortion

$$d(Z,\hat{Z})=X_Z-X_{\hat{Z}}$$

We focus on two users w/ single subband

1 Introduction

2 Problem Model

3 Optimal Scalar Quantizer Design

Homogeneous Scalar Quantizers Heterogeneous Scalar Quantizers

4 Results

Scalar Quantizers

- K-bin SQ parameterized by
 - decision boundaries ℓ_i
 - reconstruction points \hat{x}_i
- Designed to meet distortion and/or rate constraints
- **Encoding:** report the index of the bin containing *X_i*
- **Decoding:** map bin index to reconstruction points

$$\ell_0 \triangleq \min \mathcal{X} \quad \ell_K \triangleq \max \mathcal{X}$$

 X_i MS*i*'s channel capacity \mathcal{X} support set for r.v. X_i S_i MS*i*'s message to BS

1 Introduction

2 Problem Model

3 Optimal Scalar Quantizer Design Homogeneous Scalar Quantizers Heterogeneous Scalar Quantizers

4 Results

Minimum Distortion Scalar Quantizers

Obs: Not reproducing local state \Rightarrow reconstruction points not needed **HomSQ:** Both users have identical quantizer decision boundaries

- Distortion is a function of ℓ
- Select ℓ to minimize $D(\ell)$

Theorem

If ℓ is an optimal HomSQ then there exists $\mu \geq 0$ such that

$$f_X(\ell_k) \int_{\ell_{k-1}}^{\ell_{k+1}} (\ell_k - x) f_X(x) \, \mathrm{d}x - \mu_k + \mu_{k+1} = 0$$
$$\mu_k(\ell_{k-1} - \ell_k) = 0.$$

Entropy Constrained Scalar Quantizers

- Rate is also a function of ℓ
- Select ℓ to minimize D(ℓ) w/ an upper-limit R₀ on rate

$$\mathfrak{p}_k \triangleq \mathbb{P}(S_i = k) = F_X(\ell_k) - F_X(\ell_{k-1})$$

$$R_{HomSQ}(\ell) = H(S_1) + H(S_2) = 2H(s)$$

Problem is non-convex

Theorem

If ℓ is an optimal ECSQ, then there exists $\mu \ge 0$ and $\mu_R \ge 0$ such that

$$f_X(\ell_k) \left(\int_{\ell_{k-1}}^{\ell_{k+1}} (\ell_k - x) f_X(x) \, \mathrm{d}x + 2\mu_R \log_2\left(\frac{p_{k+1}}{p_k}\right) \right) - \mu_k + \mu_{k+1} = 0$$

$$\mu_k(\ell_{k-1} - \ell_k) = 0 \text{ and } \mu_R(R_{HomSQ}(\ell) - R_0) = 0.$$

1 Introduction

2 Problem Model

3 Optimal Scalar Quantizer Design

Homogeneous Scalar Quantizers Heterogeneous Scalar Quantizers

4 Results

Optimal Scalar Quantizer Design Heterogeneous Scalar Quantizers

From HomSQs to HetSQs

Some Insights

- Obvious for $S_1 \neq S_2$
- Flip a coin for $S_1 = S_2$
- Distortion only along diagonal

- arg max not symmetric
- Distortion is
- Same distortion for a fixed mapping along diagonal

From HomSQ to HetSQ

Rate Reduction

Obs: All mappings have the same distortion; some have better total rate

Theorem

For an optimal HomSQ ℓ^* that achieves a distortion $D(\ell^*)$, there exists a HetSQ that achieves the same distortion but at a lower rate.

Staggered HetSQ

Staggered Mapping X₂

$$egin{aligned} R^{(1)}_{HetSQ} &\leq R^{(1)}_{HomSQ} \ R^{(2)}_{HetSQ} &\leq R^{(2)}_{HomSQ} \end{aligned}$$

Theorem

For a HetSQ, if there exists an quantization interval for a user that is completely contained in the quantization interval for another user, then the quantizer is not optimal.

Design of HetSQ

- 1: Select the total # of bins K
- Design optimal HomSQ boundaries ℓ_{HomSQ}
- 3: Assign $\ell_{HomSQ}^{(k)}$ to MS1 if k odd; else, MS2

1 Introduction

- **2** Problem Model
- Optimal Scalar Quantizer Design Homogeneous Scalar Quantizers Heterogeneous Scalar Quantizers

4 Results

Results

Example 1 Uniform(a, b) Channel Capacity

For $k = 1, \ldots, K - 1$, the optimal quantizer is given as

$$\ell_k^* = \frac{aK + (b-a)k}{K}, \ \mu_k^* = 0$$

HetSQ-No free lunch; consider

- *K* = 3: 42.1% fewer bits
 - MS2 scheduled w.p. 0.556 $p_{(2)}^{(2)}$
 - $R_{HetSQ}^{(2)} = R_{HetSQ}^{(1)}$
- *K* = 4, 37.5% fewer bits
 - MS2 scheduled w.p. 0.500
 - $R_{HetSQ}^{(2)} = 0.67 R_{HetSQ}^{(1)}$

Uniform(0, 1) & K = 1, ..., 6

DSQ

Results

Example 2 Exponential $(Exp(\lambda))$ Channel Capacity

Let $w_k = \lambda \ell_k$; then the optimal quantizer is given as

$$w_{k}^{*} = \frac{-e^{-w_{k-1}^{*}}(1+w_{k-1}^{*})+e^{-w_{k+1}^{*}}(1+w_{k+1}^{*})}{(e^{-w_{k+1}^{*}}-e^{-w_{k-1}^{*}})}$$

$$Exp(2) \& K = 1, \dots, 6$$

HetSQ—No free lunch; consider

- *K* = 3: 43.3% fewer bits
 - MS2 scheduled w.p. 0.560
 - $R_{HetSQ}^{(2)} \approx 0.73 R_{HetSQ}^{(1)}$
- *K* = 4: 38.9% fewer bits
 - MS2 scheduled w.p. 0.534
 - $R^{(2)}_{HetSQ} \approx 0.67 R^{(1)}_{HetSQ}$

Results

Example 3: LTE CQI

Discrete Uniform Channel Capacity

Q: Can we compare HomSQ and HetSQ to a fundamental limit?A: R-D function computed from Berger-Tung boundBerger-Tung inner & outer bounds coincide for independent sources

- 16 CQI levels in LTE [7]
- D = 0 for $R_1 + R_2 \le 8$ bits
- HetSQ within 0.124 bits
- HomSQ within 1.622 bits

SQ w/ SW coding is optimal for recovery of discrete sources (Servetto 2005) [4]

Produced w/ help from Gwanmo Ku & Jie Ren

DSQ

1 Introduction

2 Problem Model

Optimal Scalar Quantizer Design Homogeneous Scalar Quantizers Heterogeneous Scalar Quantizers

4 Results

Review of Contributions

- 1 Distortion optimal HomSQs
- 2 Entropy-constrained distortion optimal HomSQs
- **3** Simple HetSQs achieve same distortion w/ lower rate as best HomSQs
- 4 HetSQ for discrete uniform distribution is close to fundamental limit

Future Work

- Fundamental limit for continous sources
- Generalize 2-user to N-user
- Consider VQs for multiple subbands
- Investigate low-rate performance as $N
 ightarrow \infty$

Acknowledgments

Supported by the AFOSR under agreement number FA9550-12-1-0086

Conclusions

References

- T. M. Cover and J. A. Thomas, *Elements of Information Theory*, 2nd ed. Wiley Interscience, 2006.
- A. E. Gamal and Y.-H. Kim, *Network Information Theory*. Cambridge University Press, 2011.
- R. Zamir and T. Berger, "Multiterminal source coding with high resolution," *IEEE Trans. Inf. Theory*, vol. 45, no. 1, pp. 106–117, 1999.
- S. D. Servetto, "Achievable rates for multiterminal source coding with scalar quantizers," in *Conf. Rec. of the 39th Asilomar Conf. Signals, Systems and Computers*, 2005, pp. 1762–1766.
- A. B. Wagner, S. Tavildar, and P. Viswanath, "Rate region of the quadratic gaussian two-encoder source-coding problem," *IEEE Trans. Inf. Theory*, vol. 54, no. 5, pp. 1938–1961, 2008.

V. Misra, V. K. Goyal, and L. R. Varshney, "Distributed scalar quantization for computing: High-resolution analysis and extensions," *IEEE Trans. Inf. Theory*, vol. 57, no. 8, pp. 5298–5325, 2011.

Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer Procedures, 3GPP Technical Specification TS 36.213, Rev. 8.8.0, Sep 2009.